Carolyn S Sevier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8734466/publications.pdf

Version: 2024-02-01

35 4,665 19 30
papers citations h-index g-index

37 37 37 6637 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The asymmetric Pitx2 gene regulates gut muscular-lacteal development and protects against fatty liver disease. Cell Reports, 2021, 37, 110030.	6.4	7
2	Activity of the yeast cytoplasmic Hsp70 nucleotide-exchange factor Fes1 is regulated by reversible methionine oxidation. Journal of Biological Chemistry, 2020, 295, 552-569.	3.4	19
3	Pathways for Sensing and Responding to Hydrogen Peroxide at the Endoplasmic Reticulum. Cells, 2020, 9, 2314.	4.1	17
4	Working Together: Redox Signaling between the Endoplasmic Reticulum and Mitochondria. Chemical Research in Toxicology, 2019, 32, 342-344.	3.3	11
5	Methionine sulfoxide reductase reverses oxidation of the nucleotide exchange factor Fes1 to regulate cytoplasmic Hsp70 chaperone cycle. FASEB Journal, 2019, 33, 780.9.	0.5	O
6	Disrupted Hydrogen-Bond Network and Impaired ATPase Activity in an Hsc70 Cysteine Mutant. Biochemistry, 2018, 57, 1073-1086.	2.5	12
7	How Are Proteins Reduced in the Endoplasmic Reticulum?. Trends in Biochemical Sciences, 2018, 43, 32-43.	7. 5	82
8	A role for the Nâ€terminal domain in modulating the activities of the nucleotide exchange factor Sil1. FASEB Journal, 2018, 32, 793.13.	0.5	0
9	An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP. ELife, $2017, 6, .$	6.0	27
10	Formation and Reversibility of BiP Protein Cysteine Oxidation Facilitate Cell Survival during and post Oxidative Stress. Journal of Biological Chemistry, 2016, 291, 7541-7557.	3.4	50
11	A Conserved Cysteine within the ATPase Domain of the Endoplasmic Reticulum Chaperone BiP is Necessary for a Complete Complement of BiP Activities. Journal of Molecular Biology, 2016, 428, 4168-4184.	4.2	11
12	Regulation of the Hsp70 BiP Molecular Chaperone Activities by Glutathiolation. FASEB Journal, 2015, 29, 717.11.	0.5	0
13	Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress. ELife, 2014, 3, e03496.	6.0	93
14	Oxidation of the Hsp70 BiP protects cells during ER stress. FASEB Journal, 2013, 27, 993.4.	0.5	0
15	Erv2 and Quiescin Sulfhydryl Oxidases: Erv-Domain Enzymes Associated with the Secretory Pathway. Antioxidants and Redox Signaling, 2012, 16, 800-808.	5.4	18
16	Balanced Ero1 activation and inactivation establishes ER redox homeostasis. Journal of Cell Biology, 2012, 196, 713-725.	5.2	65
17	The Genetic Landscape of a Cell. Science, 2010, 327, 425-431.	12.6	1,937
18	Steps in reductive activation of the disulfideâ€generating enzyme Ero1p. Protein Science, 2010, 19, 1863-1876.	7.6	22

#	Article	IF	CITATIONS
19	New insights into oxidative folding. Journal of Cell Biology, 2010, 188, 757-758.	5.2	17
20	Oxidative Activity of Yeast Ero1p on Protein Disulfide Isomerase and Related Oxidoreductases of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2010, 285, 18155-18165.	3.4	47
21	The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases. Protein Science, 2009, 14, 1630-1642.	7.6	41
22	Ero1 and redox homeostasis in the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 549-556.	4.1	258
23	Yeast Mpd1p Reveals the Structural Diversity of the Protein Disulfide Isomerase Family. Journal of Molecular Biology, 2008, 384, 631-640.	4.2	19
24	Chapter 1.6. The Ero1 Sulfhydryl Oxidase and the Oxidizing Potential of the Endoplasmic Reticulum. RSC Biomolecular Sciences, 2008, , 105-120.	0.4	0
25	Modulation of Cellular Disulfide-Bond Formation and the ER Redox Environment by Feedback Regulation of Ero1. Cell, 2007, 129, 333-344.	28.9	219
26	Conservation and Diversity of the Cellular Disulfide Bond Formation Pathways. Antioxidants and Redox Signaling, 2006, 8, 797-811.	5.4	103
27	Disulfide Transfer between Two Conserved Cysteine Pairs Imparts Selectivity to Protein Oxidation by Ero1. Molecular Biology of the Cell, 2006, 17, 2256-2266.	2.1	65
28	Generating disulfides enzymatically: Reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 299-304.	7.1	324
29	Structural Determinants of Substrate Access to the Disulfide Oxidase Erv2p. Journal of Molecular Biology, 2005, 354, 952-966.	4.2	31
30	Formation and transfer of disulphide bonds in living cells. Nature Reviews Molecular Cell Biology, 2002, 3, 836-847.	37.0	659
31	A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p. Nature Structural Biology, 2002, 9, 61-67.	9.7	163
32	p38: A Novel Protein That Associates with the Vesicular Stomatitis Virus Glycoprotein. Biochemical and Biophysical Research Communications, 2001, 287, 574-582.	2.1	8
33	A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation. Nature Cell Biology, 2001, 3, 874-882.	10.3	164
34	Efficient Export of the Vesicular Stomatitis Virus G Protein from the Endoplasmic Reticulum Requires a Signal in the Cytoplasmic Tail That Includes Both Tyrosine-based and Di-acidic Motifs. Molecular Biology of the Cell, 2000, 11, 13-22.	2.1	171
35	Fragmentation of a Golgi-Localized Chimeric Protein Allows Detergent Solubilization and Reveals an Alternate Conformation of the Cytoplasmic Domainâ€. Biochemistry, 1998, 37, 185-192.	2.5	4