
Andrea M Stringer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8734394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer, 2020, 126, 4423-4431.	4.1	540
2	The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: Pathobiology, animal models and cytotoxic drugs. Cancer Treatment Reviews, 2007, 33, 448-460.	7.7	235
3	Gastrointestinal Microflora and Mucins May Play a Critical Role in the Development of 5-Fluorouracil-Induced Gastrointestinal Mucositis. Experimental Biology and Medicine, 2009, 234, 430-441.	2.4	182
4	Characterisation of mucosal changes in the alimentary tract following administration of irinotecan: implications for the pathobiology of mucositis. Cancer Chemotherapy and Pharmacology, 2008, 62, 33-41.	2.3	179
5	Systematic review of agents for the management of gastrointestinal mucositis in cancer patients. Supportive Care in Cancer, 2013, 21, 313-326.	2.2	177
6	VSL#3 probiotic treatment reduces chemotherapy-induced diarrhoea and weight loss. Cancer Biology and Therapy, 2007, 6, 1445-1450.	3.4	156
7	Faecal microflora and β-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biology and Therapy, 2008, 7, 1919-1925.	3.4	150
8	Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered?. Cancer Chemotherapy and Pharmacology, 2009, 63, 239-251.	2.3	147
9	Serum levels of NF-κB and pro-inflammatory cytokines following administration of mucotoxic drugs. Cancer Biology and Therapy, 2008, 7, 1139-1145.	3.4	145
10	Emerging evidence on the pathobiology of mucositis. Supportive Care in Cancer, 2013, 21, 3233-3241.	2.2	145
11	Irinotecanâ€induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile. International Journal of Experimental Pathology, 2009, 90, 489-499.	1.3	131
12	Emerging evidence on the pathobiology of mucositis. Supportive Care in Cancer, 2013, 21, 2075-2083.	2.2	121
13	Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis. Radiation Oncology, 2010, 5, 22.	2.7	109
14	Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases. Supportive Care in Cancer, 2013, 21, 1843-1852.	2.2	103
15	Chemotherapy-Induced Modifications to Gastrointestinal Microflora: Evidence and Implications of Change. Current Drug Metabolism, 2009, 10, 79-83.	1.2	96
16	Microbiota and their role in the pathogenesis of oral mucositis. Oral Diseases, 2015, 21, 17-30.	3.0	87
17	Anti-Inflammatory Cytokines: Important Immunoregulatory Factors Contributing to Chemotherapy-Induced Gastrointestinal Mucositis. Chemotherapy Research and Practice, 2012, 2012, 1-11.	1.6	86
18	Noncardiac Vascular Toxicities of Vascular Endothelial Growth Factor Inhibitors in Advanced Cancer: A Review. Oncologist, 2011, 16, 432-444.	3.7	80

ANDREA M STRINGER

#	Article	IF	CITATIONS
19	Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson's disease. NeuroToxicology, 2018, 65, 174-185.	3.0	79
20	Irinotecan-induced mucositis is associated with changes in intestinal mucins. Cancer Chemotherapy and Pharmacology, 2009, 64, 123-132.	2.3	70
21	Growth factors and cytokines in the prevention and treatment of oral and gastrointestinal mucositis. Supportive Care in Cancer, 2006, 14, 519-527.	2.2	69
22	Interaction between Host Cells and Microbes in Chemotherapy-Induced Mucositis. Nutrients, 2013, 5, 1488-1499.	4.1	64
23	The role of oral flora in the development of chemotherapyâ€induced oral mucositis. Journal of Oral Pathology and Medicine, 2015, 44, 81-87.	2.7	62
24	Chemotherapy-induced diarrhoea. Current Opinion in Supportive and Palliative Care, 2009, 3, 31-35.	1.3	58
25	A novel animal model to investigate fractionated radiotherapy-induced alimentary mucositis: the role of apoptosis, p53, nuclear factor-ήB, COX-1, and COX-2. Molecular Cancer Therapeutics, 2007, 6, 2319-2327.	4.1	57
26	Matrix metalloproteinases are possible mediators for the development of alimentary tract mucositis in the dark agouti rat. Experimental Biology and Medicine, 2010, 235, 1244-1256.	2.4	55
27	Systematic review of agents for the management of cancer treatment-related gastrointestinal mucositis and clinical practice guidelines. Supportive Care in Cancer, 2019, 27, 4011-4022.	2.2	51
28	Gene expression analysis of multiple gastrointestinal regions reveals activation of common cell regulatory pathways following cytotoxic chemotherapy. International Journal of Cancer, 2007, 121, 1847-1856.	5.1	47
29	Radiation therapy-induced mucositis: Relationships between fractionated radiation, NF-κB, COX-1, and COX-2. Cancer Treatment Reviews, 2006, 32, 645-651.	7.7	44
30	Systematic review of growth factors and cytokines for the management of oral mucositis in cancer patients and clinical practice guidelines. Supportive Care in Cancer, 2020, 28, 2485-2498.	2.2	42
31	Chemotherapy-induced diarrhea is associated with changes in the luminal environment in the DA rat. Experimental Biology and Medicine, 2007, 232, 96-106.	2.4	41
32	Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment. The Journal of Supportive Oncology, 2007, 5, 259-67.	2.3	40
33	Irinotecanâ€induced alterations in intestinal cell kinetics and extracellular matrix component expression in the dark agouti rat. International Journal of Experimental Pathology, 2011, 92, 357-365.	1.3	34
34	Development of a rat model of oral small molecule receptor tyrosine kinase inhibitor-induced diarrhea. Cancer Biology and Therapy, 2012, 13, 1269-1275.	3.4	34
35	Chemotherapy-induced mucositis: the role of the gastrointestinal microbiome and toll-like receptors. Experimental Biology and Medicine, 2013, 238, 1-6.	2.4	29
36	Involvement of matrix metalloproteinases (<scp>MMP</scp> â€3 and <scp>MMP</scp> â€9) in the pathogenesis of irinotecanâ€induced oral mucositis. Journal of Oral Pathology and Medicine, 2015, 44, 459-467.	2.7	29

ANDREA M STRINGER

#	Article	IF	CITATIONS
37	Chemotherapy-induced mucositis: The role of mucin secretion and regulation, and the enteric nervous system. NeuroToxicology, 2013, 38, 101-105.	3.0	27
38	Determining the mechanisms of lapatinib-induced diarrhoea using a rat model. Cancer Chemotherapy and Pharmacology, 2014, 74, 617-627.	2.3	25
39	Dark Agouti rat model of chemotherapy-induced mucositis: Establishment and current state of the art. Experimental Biology and Medicine, 2015, 240, 725-741.	2.4	25
40	Role of p53 in irinotecan-induced intestinal cell death and mucosal damage. Anti-Cancer Drugs, 2007, 18, 197-210.	1.4	22
41	Animal models of mucositis: critical tools for advancing pathobiological understanding and identifying therapeutic targets. Current Opinion in Supportive and Palliative Care, 2019, 13, 119-133.	1.3	16
42	Irinotecan-Induced Mucositis Is Associated with Goblet Cell Dysregulation and Neural Cell Damage in a Tumour Bearing DA Rat Model. Pathology and Oncology Research, 2020, 26, 955-965.	1.9	16
43	Dietary Oat Bran Reduces Systemic Inflammation in Mice Subjected to Pelvic Irradiation. Nutrients, 2020, 12, 2172.	4.1	16
44	Advances in the Use of Anti-inflammatory Agents to Manage Chemotherapy-induced Oral and Gastrointestinal Mucositis. Current Pharmaceutical Design, 2018, 24, 1518-1532.	1.9	16
45	Velafermin improves gastrointestinal mucositis following irinotecan treatment in tumor-bearing DA rats. Cancer Biology and Therapy, 2007, 6, 541-547.	3.4	15
46	Fractionated abdominal irradiation induces intestinal microvascular changes in an in vivo model of radiotherapy-induced gut toxicity. Supportive Care in Cancer, 2017, 25, 1973-1983.	2.2	14
47	lrinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues. Cancer Chemotherapy and Pharmacology, 2017, 79, 233-249.	2.3	14
48	Long-term mucosal injury and repair in a murine model of pelvic radiotherapy. Scientific Reports, 2019, 9, 13803.	3.3	14
49	Selection of Housekeeping Genes for Gene Expression Studies in a Rat Model of Irinotecan-Induced Mucositis. Chemotherapy, 2011, 57, 43-53.	1.6	12
50	Kinetics and regional specificity of irinotecan-induced gene expression in the gastrointestinal tract. Toxicology, 2010, 269, 1-12.	4.2	11
51	5-Fluorouracil and irinotecan (SN-38) have limited impact on colon microbial functionality and composition. PeerJ, 2017, 5, e4017.	2.0	11
52	Investigation of Effect of Nutritional Drink on Chemotherapy-Induced Mucosal Injury and Tumor Growth in an Established Animal Model. Nutrients, 2013, 5, 3948-3963.	4.1	10
53	Host–microbe cross talk in cancer therapy. Current Opinion in Supportive and Palliative Care, 2015, 9, 174-181.	1.3	10
54	Matrix metalloproteinase expression is altered in the small and large intestine following fractionated radiation in vivo. Supportive Care in Cancer, 2018, 26, 3873-3882.	2.2	7

Andrea M Stringer

#	Article	IF	CITATIONS
55	Current evidence for vitamin D in intestinal function and disease. Experimental Biology and Medicine, 2019, 244, 1040-1052.	2.4	7
56	Intake of citrus fruits and vegetables and the intensity of defecation urgency syndrome among gynecological cancer survivors. PLoS ONE, 2019, 14, e0208115.	2.5	7
57	Vascular endothelial growth factor (VEGF), transforming growth factor beta (TGFβ), angiostatin, and endostatin are increased in radiotherapy-induced gastrointestinal toxicity. International Journal of Radiation Biology, 2018, 94, 645-655.	1.8	6
58	Irinotecan induces enterocyte cell death and changes to muc2 and muc4 composition during mucositis in a tumour-bearing DA rat model. Cancer Chemotherapy and Pharmacology, 2019, 83, 893-904.	2.3	5
59	Therapeutic Potential of a Novel Vitamin D3 Oxime Analogue, VD1-6, with CYP24A1 Enzyme Inhibitory Activity and Negligible Vitamin D Receptor Binding. Biomolecules, 2022, 12, 960.	4.0	5
60	The potential successes and challenges of targeted anticancer therapies. Current Opinion in Supportive and Palliative Care, 2010, 4, 16-18.	1.3	4
61	A Fiber-Rich Diet and Radiation-Induced Injury in the Murine Intestinal Mucosa. International Journal of Molecular Sciences, 2022, 23, 439.	4.1	4
62	New therapeutic strategies for combatting gastrointestinal toxicity. Current Opinion in Supportive and Palliative Care, 2020, 14, 142-152.	1.3	3
63	Editorial: Knowledge of gastrointestinal toxicity mechanisms is paving the way for improved assessment and management of patient supportive care. Current Opinion in Supportive and Palliative Care, 2019, 13, 111-113.	1.3	0
64	Editorial: New innovations in therapeutic targets for gastrointestinal toxicity: exploring targets beyond the intestine. Current Opinion in Supportive and Palliative Care, 2020, 14, 118-119.	1.3	0
65	Maintaining anorectal function in patients with rectal cancer using biofeedback training. Annals of Translational Medicine, 2020, 8, 63-63.	1.7	0
66	OUP accepted manuscript. Journal of Pharmacy and Pharmacology, 2021, , .	2.4	0