Xavier Subirats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8734375/publications.pdf

Version: 2024-02-01

516710 552781 40 748 16 26 citations h-index g-index papers 41 41 41 745 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced voltammetric performance of sensors based on oxidized 2D layered black phosphorus. Talanta, 2022, 238, 123036.	5 . 5	3
2	Solute–Solvent Interactions in Hydrophilic Interaction Liquid Chromatography: Characterization of the Retention in a Silica Column by the Abraham Linear Free Energy Relationship Model. Journal of Solution Chemistry, 2022, 51, 1081-1100.	1.2	6
3	Ionizable Drug Self-Associations and the Solubility Dependence on pH: Detection of Aggregates in Saturated Solutions Using Mass Spectrometry (ESI-Q-TOF-MS/MS). Molecular Pharmaceutics, 2021, 18, 2311-2321.	4.6	9
4	Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. Journal of Chromatography A, 2021, 1656, 462543.	3.7	8
5	Octanol-Water Partition Constant. , 2020, , 183-208.		36
6	HILIC characterization: Estimation of phase volumes and composition for a zwitterionic column. Analytica Chimica Acta, 2020, 1130, 39-48.	5.4	15
7	Capillary electrophoresis for drug analysis and physicochemical characterization. Handbook of Analytical Separations, 2020, , 633-666.	0.8	5
8	Potentiometric CheqSol and standardized shake-flask solubility methods are complimentary tools in physicochemical profiling. European Journal of Pharmaceutical Sciences, 2020, 148, 105305.	4.0	2
9	Characterization of hydrophilic interaction liquid chromatography retention by a linear free energy relationship. Comparison to reversed-Âand normal-phase retentions. Analytica Chimica Acta, 2019, 1092, 132-143.	5 . 4	26
10	New discrimination tools for harvest year and varieties of white wines based on hydrophilic interaction liquid chromatography with amperometric detection. Talanta, 2019, 201, 104-110.	5 . 5	10
11	Retention-pH profiles of acids and bases in hydrophilic interaction liquid chromatography. Analytica Chimica Acta, 2019, 1050, 176-184.	5 . 4	18
12	Critical comparison of shake-flask, potentiometric and chromatographic methods for lipophilicity evaluation (log P o/w) of neutral, acidic, basic, amphoteric, and zwitterionic drugs. European Journal of Pharmaceutical Sciences, 2018, 122, 331-340.	4.0	21
13	Chasing the elusive hold-up time from an LFER approach. Journal of Chromatography A, 2018, 1571, 176-184.	3.7	11
14	Revisiting blood-brain barrier: A chromatographic approach. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 98-109.	2.8	9
15	Lipophilicity of amphoteric and zwitterionic compounds: A comparative study of determination methods. Talanta, 2017, 162, 293-299.	5 . 5	20
16	Solubility-pH profiles of a free base and its salt: sibutramine as a case study. ADMET and DMPK, 2017, 5, 253-256.	2.1	2
17	Phenothiazines solution complexity – Determination of pKa and solubility-pH profiles exhibiting sub-micellar aggregation at 25 and 37°C. European Journal of Pharmaceutical Sciences, 2016, 93, 163-176.	4.0	15
18	Microemulsion electrokinetic chromatography as a suitable tool for lipophilicity determination of acidic, neutral, and basic compounds. Electrophoresis, 2016, 37, 2010-2016.	2.4	11

#	Article	IF	Citations
19	High-throughput logPo/w determination from UHPLC measurements: Revisiting the chromatographic hydrophobicity index. Journal of Pharmaceutical and Biomedical Analysis, 2016, 127, 26-31.	2.8	9
20	Buffers for Reversed-Phase Liquid Chromatographyâ~†., 2015,,.		0
21	Methods for pKa Determination (II): Sparingly Soluble Compounds and High-Throughput Approaches. , 2015, , .		2
22	Methods for pKa Determination (I): Potentiometry, Spectrophotometry, and Capillary Electrophoresis. , 2015, , .		3
23	Capillary Electrophoresis, Gas-Phase Electrophoretic Mobility Molecular Analysis, and Electron Microscopy: Effective Tools for Quality Assessment and Basic Rhinovirus Research. Methods in Molecular Biology, 2015, 1221, 101-128.	0.9	9
24	High throughput determination log $Po/w/pKa/log\ Do/w\ of\ drugs\ by\ combination\ of\ UHPLC\ and\ CE\ methods.\ ADMET\ and\ DMPK,\ 2014,\ 2,\ .$	2.1	5
25	Viral Uncoating Is Directional: Exit of the Genomic RNA in a Common Cold Virus Starts with the Poly-(A) Tail at the 3′-End. PLoS Pathogens, 2013, 9, e1003270.	4.7	43
26	Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas phase electrophoretic mobility molecular analysis: Part II. Electrophoresis, 2013, 34, 1600-1609.	2.4	10
27	Characterization of rhinovirus subviral <scp>A</scp> particles via capillary electrophoresis, electron microscopy and gasâ€phase electrophoretic mobility molecular analysis: Part I. Electrophoresis, 2012, 33, 1833-1841.	2.4	23
28	Recent developments in capillary and chip electrophoresis of bioparticles: Viruses, organelles, and cells. Electrophoresis, 2011, 32, 1579-1590.	2.4	34
29	Liposomal Nanocontainers as Models for Viral Infection: Monitoring Viral Genomic RNA Transfer through Lipid Membranes. Journal of Virology, 2011, 85, 8368-8375.	3.4	26
30	Liposomal Leakage Induced by Virus-Derived Peptides, Viral Proteins, and Entire Virions: Rapid Analysis by Chip Electrophoresis. Analytical Chemistry, 2010, 82, 8146-8152.	6.5	9
31	Retention models for ionizable compounds in reversed-phase liquid chromatography. Journal of Chromatography A, 2009, 1216, 1756-1775.	3.7	62
32	Retention of ionisable compounds on high-performance liquid chromatography XVIII: pH variation in mobile phases containing formic acid, piperazine, tris, boric acid or carbonate as buffering systems and acetonitrile as organic modifier. Journal of Chromatography A, 2009, 1216, 2491-2498.	3.7	22
33	Retention of ionisable compounds on high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 5445-5448.	3.7	10
34	On the Effect of Organic Solvent Composition on the pH of Buffered HPLC Mobile Phases and the p <i>K</i> _a of Analytes—A Review. Separation and Purification Reviews, 2007, 36, 231-255.	5.5	104
35	Retention of ionisable compounds on high-performance liquid chromatography XVII. Journal of Chromatography A, 2007, 1138, 203-215.	3.7	35
36	Retention of ionisable compounds on high-performance liquid chromatography. Journal of Chromatography A, 2006, 1121, 170-177.	3.7	31

XAVIER SUBIRATS

#	Article	IF	CITATION
37	Nitromethane as solvent in capillary electrophoresis. Journal of Chromatography A, 2005, 1079, 246-253.	3.7	22
38	Comparison of methanol and acetonitrile as solvents for the separation of sertindole and its major metabolites by capillary zone electrophoresis. Electrophoresis, 2005, 26, 3315-3324.	2.4	20
39	Retention of ionisable compounds on high-performance liquid chromatography. Journal of Chromatography A, 2004, 1059, 33-42.	3.7	40
40	Lipophilicity determination of acidic compounds: MEEKC as a reliable high-throughput methodology. ADMET and DMPK, 0, , .	2.1	0