Jelena Srebric

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/873416/publications.pdf

Version: 2024-02-01

74 papers

4,022 citations

34 h-index 62 g-index

74 all docs

74 docs citations

times ranked

74

4101 citing authors

#	Article	IF	CITATIONS
1	A radiative cooling structural material. Science, 2019, 364, 760-763.	12.6	856
2	A critical review on the performance and design of combined cooled ceiling and displacement ventilation systems. Energy and Buildings, 2002, 34, 497-509.	6.7	167
3	Advanced computational modeling for in vitro nanomaterial dosimetry. Particle and Fibre Toxicology, 2015, 12, 32.	6.2	131
4	A Clear, Strong, and Thermally Insulated Transparent Wood for Energy Efficient Windows. Advanced Functional Materials, 2020, 30, 1907511.	14.9	124
5	A heat transfer model for assessment of plant based roofing systems in summer conditions. Building and Environment, 2012, 49, 310-323.	6.9	114
6	The impact of exterior surface convective heat transfer coefficients on the building energy consumption in urban neighborhoods with different plan area densities. Energy and Buildings, 2015, 86, 449-463.	6.7	105
7	Natural ventilation design for houses in Thailand. Energy and Buildings, 2001, 33, 815-824.	6.7	102
8	An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments. Building and Environment, 2012, 47, 67-75.	6.9	102
9	Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems. National Science Review, 2016, 3, nww081.	9.5	96
10	Parameters optimization of a vertical ground heat exchanger based on response surface methodology. Energy and Buildings, 2011, 43, 1288-1294.	6.7	87
11	Simplified Numerical Models for Complex Air Supply Diffusers. HVAC and R Research, 2002, 8, 277-294.	0.6	83
12	Numerical simulation of convective heat transfer coefficients at the external surfaces of building arrays immersed in a turbulent boundary layer. International Journal of Heat and Mass Transfer, 2013, 61, 209-225.	4.8	81
13	Predictions of electricity consumption in a campus building using occupant rates and weather elements with sensitivity analysis: Artificial neural network vs. linear regression. Sustainable Cities and Society, 2020, 62, 102385.	10.4	80
14	Model predictive control for indoor thermal comfort and energy optimization using occupant feedback. Energy and Buildings, 2015, 102, 357-369.	6.7	78
15	Building neighborhood emerging properties and their impacts on multi-scale modeling of building energy and airflows. Building and Environment, 2015, 91, 246-262.	6.9	77
16	Effects of plant and substrate selection on thermal performance of green roofs during the summer. Building and Environment, 2014, 78, 199-211.	6.9	67
17	Influence of plant coverage on the total green roof energy balance and building energy consumption. Energy and Buildings, 2015, 103, 1-13.	6.7	67
18	Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation. Applied Energy, 2016, 164, 341-351.	10.1	67

#	Article	IF	Citations
19	Effect of urban neighborhoods on the performance of building cooling systems. Building and Environment, 2015, 90, 15-29.	6.9	65
20	Different modeling strategies of infiltration rates for an office building to improve accuracy of building energy simulations. Energy and Buildings, 2015, 86, 288-295.	6.7	62
21	An investigation of sensible heat fluxes at a green roof in a laboratory setup. Building and Environment, 2011, 46, 1851-1861.	6.9	58
22	Building energy model calibration with schedules derived from electricity use data. Applied Energy, 2017, 190, 997-1007.	10.1	56
23	Experimental quantification of heat and mass transfer process through vegetated roof samples in a new laboratory setup. International Journal of Heat and Mass Transfer, 2011, 54, 5149-5162.	4.8	54
24	Development of new and validation of existing convection correlations for rooms with displacement ventilation systems. Energy and Buildings, 2006, 38, 163-173.	6.7	53
25	A CFD-Based Tool for Studying Temperature in Rack-Mounted Servers. IEEE Transactions on Computers, 2008, 57, 1129-1142.	3.4	53
26	Impact of occupancy rates on the building electricity consumption in commercial buildings. Energy and Buildings, 2017, 138, 591-600.	6.7	53
27	Variability of optimal solutions for building components based on comprehensive life cycle cost analysis. Energy and Buildings, 2014, 79, 223-231.	6.7	52
28	A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments. Sustainability, 2019, 11, 4166.	3.2	51
29	Ventilation and laboratory confirmed acute respiratory infection (ARI) rates in college residence halls in College Park, Maryland. Environment International, 2020, 137, 105537.	10.0	51
30	Numerical modeling of indoor environment with a ceiling fan and an upper-room ultraviolet germicidal irradiation system. Building and Environment, 2014, 72, 116-124.	6.9	48
31	Validation of predictive heat and mass transfer green roof model with extensive green roof field data. Ecological Engineering, 2012, 47, 165-173.	3.6	46
32	Cluster analysis of simulated energy use for LEED certified U.S. office buildings. Energy and Buildings, 2014, 85, 86-97.	6.7	43
33	Performance analysis of a ductless personalized ventilation combined with radiant floor cooling system and displacement ventilation. Building Simulation, 2019, 12, 905-919.	5. 6	43
34	Modeling and Managing Thermal Profiles of Rack-mounted Servers with ThermoStat. , 2007, , .		40
35	Demonstration of reduced-order urban scale building energy models. Energy and Buildings, 2017, 156, 17-28.	6.7	37
36	An extensive comparison of modified zero-equation, standard k-lμ, and LES models in predicting urban airflow. Sustainable Cities and Society, 2018, 40, 28-43.	10.4	37

#	Article	IF	Citations
37	A data-driven state-space model of indoor thermal sensation using occupant feedback for low-energy buildings. Energy and Buildings, 2015, 91, 187-198.	6.7	36
38	Influence of building surface solar irradiance on environmental temperatures in urban neighborhoods. Sustainable Cities and Society, 2016, 26, 186-202.	10.4	36
39	A comparison of the thermal comfort performances of a radiation floor cooling system when combined with a range of ventilation systems. Indoor and Built Environment, 2020, 29, 527-542.	2.8	34
40	Personalized cooling as an energy efficiency technology for city energy footprint reduction. Journal of Cleaner Production, 2018, 171, 491-505.	9.3	32
41	Impact of correlation of plug load data, occupancy rates and local weather conditions on electricity consumption in a building using four back-propagation neural network models. Sustainable Cities and Society, 2020, 62, 102321.	10.4	32
42	Quantifying the impact of urban wind sheltering on the building energy consumption. Applied Thermal Engineering, 2017, 116, 850-865.	6.0	31
43	New Convection Correlations for Cooled Ceiling Panels in Room with Mixed and Stratified Airflow. HVAC and R Research, 2006, 12, 279-294.	0.6	29
44	Actual building energy use patterns and their implications for predictive modeling. Energy Conversion and Management, 2017, 144, 164-180.	9.2	28
45	A validated numerical investigation of the ceiling fan's role in the upper-room UVGI efficacy. Building and Environment, 2015, 86, 109-119.	6.9	27
46	Accumulated snow layer influence on the heat transfer process through green roof assemblies. Building and Environment, 2015, 87, 82-91.	6.9	27
47	Cooling efficiency of a spot-type personalized air-conditioner. Building and Environment, 2017, 121, 35-48.	6.9	27
48	Numerical Investigation of Upperâ€Room <scp>UVGI</scp> Disinfection Efficacy in an Environmental Chamber with a Ceiling Fan. Photochemistry and Photobiology, 2013, 89, 782-791.	2.5	25
49	Ventilation and indoor air quality in retail stores: A critical review (RP-1596). HVAC and R Research, 2014, 20, 276-294.	0.6	24
50	Measurements and Simulations of Aerosol Released while Singing and Playing Wind Instruments. ACS Environmental Au, 2021, 1, 71-84.	7.0	24
51	Building energy retrofits under capital constraints and greenhouse gas pricing scenarios. Energy and Buildings, 2015, 107, 407-416.	6.7	22
52	An indirect validation of convective heat transfer coefficients (CHTCs) for external building surfaces in an actual urban environment. Building Simulation, 2015, 8, 337-352.	5.6	20
53	Impacts of building operational schedules and occupants on the lighting energy consumption patterns of an office space. Building Simulation, 2017, 10, 447-458.	5.6	20
54	The Effect of Tree-Planting Patterns on the Microclimate within a Courtyard. Sustainability, 2019, 11, 1665.	3.2	19

#	Article	IF	Citations
55	Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study. Sustainability, 2019, 11, 4921.	3.2	18
56	Influence of reduced VAV flow settings on indoor thermal comfort in an office space. Building Simulation, 2016, 9, 101-111.	5.6	17
57	Numerical Evaluation of the Local Weather Data Impacts on Cooling Energy Use of Buildings in an Urban Area. Procedia Engineering, 2015, 121, 381-388.	1.2	16
58	Comparison of survey and numerical sensitivity analysis results to assess the role of life cycle analyses from building designers' perspectives. Energy and Buildings, 2015, 108, 463-469.	6.7	15
59	Numerical analysis of cooling potential and indoor thermal comfort with a novel hybrid radiant cooling system in hot and humid climates. Indoor and Built Environment, 2022, 31, 929-943.	2.8	14
60	Occupant perceptions and a health outcome in retail stores. Building and Environment, 2015, 93, 385-394.	6.9	11
61	A Two-Dimensional Numerical Analysis for Thermal Performance of an Intermittently Operated Radiant Floor Heating System in a Transient External Climatic Condition. Heat Transfer Engineering, 2020, 41, 825-839.	1.9	11
62	Computational fluid dynamics modelling of UR-UVGI lamp effectiveness to promote disinfection of airborne microorganisms. World Review of Science, Technology and Sustainable Development, 2013, 10, 78.	0.4	8
63	Characterization of aerosol plumes from singing and playing wind instruments associated with the risk of airborne virus transmission. Indoor Air, 2022, 32, .	4.3	8
64	Traffic noise level predictions for buildings with windows opened for natural ventilation in urban environments. Science and Technology for the Built Environment, 2017, 23, 726-735.	1.7	7
65	Energy savings and thermal comfort evaluation of a novel personal conditioning device. Energy and Buildings, 2021, 241, 110917.	6.7	5
66	A Characterization of time-dependent air infiltration rates in retail stores using calibrated multi-zone model. Science and Technology for the Built Environment, 2015, 21, 420-428.	1.7	4
67	Quantify Impacts of Local Urban Microclimate on Local Airflow Patterns. Procedia Engineering, 2017, 205, 1983-1989.	1.2	3
68	Tradeoffs between ventilation, air mixing, and passenger density for the airborne transmission risk in airport transportation vehicles. Building and Environment, 2022, 219, 109186.	6.9	3
69	Desalination metamodels and a framework for cross-comparative performance simulations. Desalination, 2022, 525, 115474.	8.2	2
70	Experimental analysis of occupant feedback based model predictive control for thermal comfort and energy optimization. , 2016 , , .		1
71	Editorial: Thoughts on the Future of Professional Societies. HVAC and R Research, 2009, 15, 817-818.	0.6	0
72	First International Conference on Energy and Indoor Environment for Hot Climates. HVAC and R Research, 2014, 20, 721-721.	0.6	0

#	Article	IF	CITATIONS
73	Creating Geometry with Basic Shape Templates in OpenStudio. Procedia Engineering, 2017, 205, 1990-1995.	1.2	O
74	Tradeoffs between energy use and ventilation rates in U.S. Retail stores. Science and Technology for the Built Environment, 2020, 26, 713-725.	1.7	0