
Katalin SinkÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8733991/publications.pdf Version: 2024-02-01

ΚΑΤΑΓΙΝ SINKÃ3

#	Article	IF	CITATIONS
1	Various colloid systems for drawing of aluminum oxide fibers. Ceramics International, 2022, 48, 5499-5508.	4.8	6
2	Photocatalytic degradation of organic dyes and phenol by iron-silicate glass prepared by the sol–gel method. New Journal of Chemistry, 2021, 45, 19019-19031.	2.8	8
3	Structural characterization, electrical and photocatalytic properties of αâ~and γ-Fe2O3 nanoparticles dispersed in iron aluminosilicate glass. Journal of Non-Crystalline Solids, 2021, 561, 120756.	3.1	12
4	Effect of various additives on aluminum oxide thin films prepared by dip coating, thermal behavior, kinetics and optical properties. Journal of the European Optical Society-Rapid Publications, 2021, 17, .	1.9	4
5	Sol–gel alumina coating on quartz substrate for environmental protection. Journal of Sol-Gel Science and Technology, 2020, 93, 262-272.	2.4	3
6	Photo-Fenton catalytic ability of iron-containing aluminosilicate glass prepared by sol-gel method. Journal of Alloys and Compounds, 2020, 816, 153227.	5.5	12
7	Structural characterization and magnetic properties of iron-phosphate glass prepared by sol-gel method. Journal of Non-Crystalline Solids, 2020, 543, 120158.	3.1	5
8	Visible light-activated photo-Fenton dye degradation ability of different FeOx·SiO2 composite systems measured by 57Fe Mössbauer spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1307-1315.	1.5	6
9	Chemical tailoring of porous aluminum oxide xerogels. Journal of Non-Crystalline Solids, 2018, 499, 394-400.	3.1	8
10	Effect of phosphorus precursors on the structure of bioactive calcium phosphate silicate systems. Materials Science and Engineering C, 2017, 73, 767-777.	7.3	6
11	The relationship between SnII fraction and visible light activated photocatalytic activity of SnOx·SiO2 glass studied by Mössbauer spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 1859-1865.	1.5	3
12	Preparation and properties of a magnetic field responsive three-dimensional electrospun polymer scaffold. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503, 79-87.	4.7	25
13	Synthesis of aluminosilicate monolithic system by a novel fast ambient drying process. Ceramics International, 2016, 42, 5100-5106.	4.8	4
14	A relationship between electrical conductivity and structural relaxation of 10SnO ₂ ·10Fe ₂ 0 ₃ &m heat-treatment. Journal of the Ceramic Society of Japan, 2015, 123, 121-128.	iddot;10P8 1.1	لاt;sub>2&
15	Photocatalytic effect and Mössbauer study of iron titanium silicate glass prepared by sol-gel method. Hyperfine Interactions, 2015, 232, 51-58.	0.5	3
16	Influence of cryogenic drying conditions on hierarchical porous structure of aluminum oxide systems. Microporous and Mesoporous Materials, 2015, 218, 7-14.	4.4	12
17	Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass. Journal of Alloys and Compounds, 2015, 645, 1-6.	5.5	11
18	Visible light activated photo-catalytic effect and local structure of iron silicate glass prepared by sol-gel method. Hyperfine Interactions, 2014, 226, 747-753.	0.5	13

Katalin SinkÃ³

#	Article	IF	CITATIONS
19	Electrospun poly(aspartic acid) gel scaffolds for artificial extracellular matrix. Polymer International, 2014, 63, 1608-1615.	3.1	44
20	Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57Fe-MA¶ssbauer spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301, 1-7.	1.5	12
21	Gel-derived porous alumina systems. Materials Letters, 2013, 107, 344-347.	2.6	7
22	Catalysis, nanostructure and macroscopic property triangle in bioactive calcium-containing ceramic systems. Materials Science and Engineering C, 2013, 33, 1371-1379.	7.3	3
23	Enhancement of electrical conductivity and chemical durability of 20R2O•10Fe2O3•xWO3•(70â^'x)V2O5 glass (R=Na, K) caused by structural relaxation. Journal of Non-Crystalline Solids, 2013, 378, 227-233.	3.1	12
24	Various Three-Dimensional Structures Connected by Al–O/OH/Acetate–Al Bonds. Inorganic Chemistry, 2013, 52, 13238-13243.	4.0	8
25	Liquid-phase syntheses of cobalt ferrite nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	30
26	Liquid-Phase Synthesis of Cobalt Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 4127-4135.	0.9	49
27	Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels. Materials, 2010, 3, 704-740.	2.9	130
28	Structural Characterization of Gel-Derived Calcium Silicate Systems. Journal of Physical Chemistry A, 2010, 114, 10403-10411.	2.5	87
29	Dissolution behaviour of iron silicate glass. Hyperfine Interactions, 2009, 192, 31-36.	0.5	2
30	57Fe-Mössbauer study of electrically conducting barium iron vanadate glass after heat treatment. Hyperfine Interactions, 2008, 185, 115-121.	0.5	0
31	Reduction of iron(III) in annealed asbestos/chrysotile. Hyperfine Interactions, 2008, 186, 161-166.	0.5	1
32	Sol–gel derived calcium silicate ceramics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 319, 143-148.	4.7	65
33	SAXS investigation of porous nanostructures. Journal of Non-Crystalline Solids, 2008, 354, 5466-5474.	3.1	24
34	Nanostructure of Gel-Derived Aluminosilicate Materials. Langmuir, 2008, 24, 949-956.	3.5	12
35	Crystallization and Structural Relaxation of xBaO (90-x)V2O5 10Fe2O3 Glasses Accompanying an Enhancement of the Elctric Conductivity. Journal of the Ceramic Society of Japan, 2007, 115, 776-779.	1.1	23
36	Preparation possibilities of aluminum and silicon-containing hybrid polymer systems. Polymers for Advanced Technologies, 2003, 14, 776-783.	3.2	3

KATALIN SINKÃ³

#	Article	IF	CITATIONS
37	Transformation of Aluminosilicate Wet Gel to Solid State. Journal of Solid State Chemistry, 2002, 165, 111-118.	2.9	7
38	Chemical processing of new piezoelectric materials. Smart Materials and Structures, 2001, 10, 1078-1084.	3.5	7
39	Gelation of Aluminosilicate Systems Under Different Chemical Conditions. Journal of Sol-Gel Science and Technology, 2001, 21, 147-156.	2.4	9
40	Short- and intermediate-range structure in Al(III)-containing gels prepared from Al-nitrate in organic medium. Chemical Physics, 1999, 246, 295-305.	1.9	0
41	Gel Structures Containing Al(III). Langmuir, 1999, 15, 6631-6636.	3.5	39
42	Preparation effects on sol–gel aluminosilicate gels. Journal of Non-Crystalline Solids, 1998, 231, 1-9.	3.1	15
43	Chemical processes involved in the sol–gel preparation of an aluminium oxohydroxide gel from aluminium nitrate in organic medium. Journal of Materials Chemistry, 1998, 8, 2095.	6.7	4
44	Preparation of an aluminum oxo-hydroxide gel in organic medium. Colloid and Polymer Science, 1996, 274, 1054-1060.	2.1	8
45	Studies of the silicon dioxide-dolomite system by thermal analysis. Thermochimica Acta, 1989, 148, 473-478.	2.7	1
46	Study of the binary CaCO3-SiO2 system by quantatitative DTA. Journal of Thermal Analysis, 1988, 33, 1003-1011.	0.6	5