Andre J Gesquiere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8733987/publications.pdf Version: 2024-02-01

ANDRE L CESOLIERE

#	Article	IF	CITATIONS
1	Engineered zinc oxide-based nanotherapeutics boost systemic antibacterial efficacy against phloem-restricted diseases. Environmental Science: Nano, 2022, 9, 2869-2886.	2.2	7
2	A deep-dyeing strategy for ultra-stable, brightly luminescent perovskite-polymer composites. Journal of Materials Chemistry C, 2021, 9, 3396-3402.	2.7	6
3	Tracking of fluorescent antibiotic conjugate in planta utilizing fluorescence lifetime imaging. Planta, 2021, 253, 62.	1.6	1
4	Perovskite Quantum Dot-Reduced Graphene Oxide Superstructure for Efficient Photodetection. ACS Applied Materials & amp; Interfaces, 2020, 12, 45165-45173.	4.0	11
5	Ligand assisted swelling–deswelling microencapsulation (LASDM) for stable, color tunable perovskite–polymer composites. Nanoscale Advances, 2020, 2, 2034-2043.	2.2	21
6	Synthesis of air-stable two-dimensional nanoplatelets of Ruddlesden–Popper organic–inorganic hybrid perovskites. Nanoscale, 2020, 12, 10072-10081.	2.8	10
7	Animal simulations facilitate smart drug design through prediction of nanomaterial transport to individual tissue cells. Science Advances, 2020, 6, eaax2642.	4.7	9
8	Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Science Advances, 2020, 6, eaay5225.	4.7	178
9	Ultrastable and Biofunctionalizable Conjugated Polymer Nanoparticles with Encapsulated Iron for Ferroptosis Assisted Chemodynamic Therapy. Molecular Pharmaceutics, 2019, 16, 4852-4866.	2.3	33
10	An in vitro assay and artificial intelligence approach to determine rate constants of nanomaterial-cell interactions. Scientific Reports, 2019, 9, 13943.	1.6	9
11	18â€3: Polarized Emission from Stretchâ€Aligned Perovskite Nanorodsâ€Polymer Composites with High Stability. Digest of Technical Papers SID International Symposium, 2018, 49, 218-221.	0.1	2
12	In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix. Nanoscale, 2018, 10, 15436-15441.	2.8	69
13	Photodynamic Therapy with Conjugated Polymer Nanoparticles: Recent Advances and Therapeutic Considerations. Journal of Cancer Treatment & Diagnosis, 2018, 2, 1-6.	0.9	3
14	Ultrastable, Highly Luminescent Organic–Inorganic Perovskite–Polymer Composite Films. Advanced Materials, 2016, 28, 10710-10717.	11.1	400
15	Hydrothermally treated chitosan spontaneously forms water-soluble spherical particles stable at a wide pH range. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 751-758.	1.8	10
16	Probing Ternary Solvent Effect in High <i>V</i> _{oc} Polymer Solar Cells Using Advanced AFM Techniques. ACS Applied Materials & Interfaces, 2016, 8, 4730-4738.	4.0	7
17	Photodynamic Therapy with Blended Conducting Polymer/Fullerene Nanoparticle Photosensitizers. Journal of Visualized Experiments, 2015, , e53038.	0.2	2
18	Non-Cytotoxic Quantum Dot–Chitosan Nanogel Biosensing Probe for Potential Cancer Targeting Agent. Nanomaterials, 2015, 5, 2359-2379.	1.9	19

ANDRE J GESQUIERE

#	Article	IF	CITATIONS
19	Development and characterization of conducting polymer nanoparticles for photodynamic therapy in vitro. Photodiagnosis and Photodynamic Therapy, 2015, 12, 476-489.	1.3	11
20	Conducting polymer nanoparticles for targeted cancer therapy. RSC Advances, 2015, 5, 37943-37956.	1.7	24
21	Composite Conjugated Polymer/Fullerene Nanoparticles as Sensitizers in Photodynamic Therapy for Cancer. BioNanoScience, 2014, 4, 15-26.	1.5	6
22	Molecular Packing in Organic Solar Cell Materials: Insights from the Emission Line Shapes of P3HT/PCBM Polymer Blend Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 19975-19984.	1.5	21
23	Influence of Backbone Rigidness on Single Chain Conformation of Thiophene-Based Conjugated Polymers. Journal of Physical Chemistry B, 2013, 117, 4461-4467.	1.2	23
24	Caveolae-Mediated Endocytosis of Conjugated Polymer Nanoparticles. Macromolecular Bioscience, 2013, 13, 913-920.	2.1	49
25	Near-infrared photoresponse sensitization of solvent additive processed poly(3-hexylthiophene)/fullerene solar cells by a low band gap polymer. Applied Physics Letters, 2012, 101, 053308.	1.5	41
26	Linker-Induced Anomalous Emission of Organic-Molecule Conjugated Metal-Oxide Nanoparticles. ACS Nano, 2012, 6, 4854-4863.	7.3	10
27	An activatable multimodal/multifunctional nanoprobe for direct imaging of intracellular drug delivery. Biomaterials, 2012, 33, 1500-1508.	5.7	55
28	The Effect of Fullerene on the Morphology of Conjugated Polymer Single Molecules and Nanoparticles. Reviews in Nanoscience and Nanotechnology, 2012, 1, 103-118.	0.4	0
29	Boojum and Stripe Textures in Long-Range Orientationally Ordered Monolayers on Solid Substrates. Langmuir, 2011, 27, 1051-1055.	1.6	5
30	Charge Trapping and Storage by Composite P3HT/PC ₆₀ BM Nanoparticles Investigated by Fluorescence-Voltage/Single Particle Spectroscopy. Journal of the American Chemical Society, 2011, 133, 20850-20856.	6.6	21
31	Singleâ€Molecule Spectroscopy and AFM Morphology Studies of a Diblock Copolymer Consisting of Poly(3â€hexylthiophene) and Fullerene. Macromolecular Chemistry and Physics, 2010, 211, 2416-2424.	1.1	7
32	Correlation between spectroscopic and morphological properties of composite P3HT/PCBM nanoparticles studied by single particle spectroscopy. Journal of Luminescence, 2010, 130, 771-780.	1.5	42
33	Fluorescent composite tubes with pH-controlled shapes. Journal of Materials Chemistry, 2010, 20, 3716.	6.7	16
34	Effect of PCBM Concentration on Photoluminescence Properties of Composite MEHâ€₽PV/PCBM Nanoparticles Investigated by a Franck–Condon Analysis of Singleâ€Particle Emission Spectra. ChemPhysChem, 2009, 10, 2449-2457.	1.0	11
35	Interplay between fluorescence and morphology in composite MEH-PPV/PCBM nanoparticles studied at the single particle level. Chemical Physics, 2009, 365, 138-143.	0.9	11
36	Single particle spectroscopy on composite MEH-PPV/PCBM nanoparticles. Journal of Luminescence, 2009, 129, 423-429.	1.5	27

ANDRE J GESQUIERE

#	Article	IF	CITATIONS
37	PCBM concentration dependent morphology of P3HT in composite P3HT/PCBM nanoparticles. Chemical Physics Letters, 2009, 476, 51-55.	1.2	30
38	Effect of electric field on the photoluminescence intensity of single CdSe nanocrystals. Chemical Physics, 2007, 341, 169-174.	0.9	79
39	Losing the Expression of Molecular Chirality in Self-Assembled Physisorbed Monolayers. Nano Letters, 2005, 5, 1395-1398.	4.5	32
40	Single Molecule Modulation Spectroscopy of Conjugated Polymers. Journal of Physical Chemistry B, 2005, 109, 12366-12371.	1.2	39
41	Single Molecule Spectroscopy of Organic Dye Nanoparticles. Nano Letters, 2005, 5, 1321-1325.	4.5	88
42	Hole-Induced Quenching of Triplet and Singlet Excitons in Conjugated Polymers. Journal of the American Chemical Society, 2005, 127, 9556-9560.	6.6	75
43	Singletâ^'Triplet and Tripletâ^'Triplet Interactions in Conjugated Polymer Single Molecules. Journal of Physical Chemistry B, 2005, 109, 10025-10034.	1.2	79
44	Single-Molecule Spectroscopy of Conjugated Polymers. Accounts of Chemical Research, 2005, 38, 602-610.	7.6	328
45	Photochemistry and kinetics of single organic nanoparticles in the presence of charge carriers. European Polymer Journal, 2004, 40, 1013-1018.	2.6	15
46	Fâ^'V/SMS:Â A New Technique for Studying the Structure and Dynamics of Single Molecules and Nanoparticlesâ€. Journal of Physical Chemistry B, 2004, 108, 10301-10308.	1.2	50
47	A Nanoscale View of Supramolecular Stereochemistry in Self-Assembled Monolayers of Enantiomers and Racemates. Langmuir, 2004, 20, 9628-9635.	1.6	41
48	Charge Injection and Photooxidation of Single Conjugated Polymer Molecules. Journal of the American Chemical Society, 2004, 126, 4116-4117.	6.6	104
49	Supramolecular Control of Two-Dimensional Phase Behavior. Chemistry - A European Journal, 2003, 9, 1198-1206.	1.7	68
50	Light- and STM-Tip-Induced Formation of One-Dimensional and Two-Dimensional Organic Nanostructuresâ€. Langmuir, 2003, 19, 6474-6482.	1.6	172
51	Toward Two-Dimensional Supramolecular Control of Hydrogen-Bonded Arrays:  The Case of Isophthalic Acids. Nano Letters, 2003, 3, 1485-1488.	4.5	85
52	Aggregation Properties of Soluble Quinacridones in Two and Three Dimensions. Chemistry of Materials, 2002, 14, 989-997.	3.2	55
53	Unusual Two-Dimensional Multicomponent Self-Assembly Probed by Scanning Tunneling Microscopy. ChemPhysChem, 2002, 3, 966-969.	1.0	21
54	Photodimerization of Cinnamate Derivatives Studied by STM. Nano Letters, 2001, 1, 353-359.	4.5	50

4

#	Article	IF	CITATIONS
55	Homo- and Heterochiral Supramolecular Tapes from Achiral, Enantiopure, and Racemic Promesogenic Formamides: Expression of Molecular Chirality in Two and Three Dimensions. Angewandte Chemie - International Edition, 2001, 40, 3217-3220.	7.2	91
56	Dynamics in Physisorbed Monolayers of 5-Alkoxy-isophthalic Acid Derivatives at the Liquid/Solid Interface Investigated by Scanning Tunneling Microscopy. Chemistry - A European Journal, 2000, 6, 3739-3746.	1.7	59
57	Scanning Tunneling Microscopy:  A Unique Tool in the Study of Chirality, Dynamics, and Reactivity in Physisorbed Organic Monolayers. Accounts of Chemical Research, 2000, 33, 520-531.	7.6	266
58	Chiral Polymorphism:Â A Scanning Tunneling Microscopy Study. Langmuir, 2000, 16, 9887-9894.	1.6	23
59	Submolecularly Resolved Polymerization of Diacetylene Molecules on the Graphite Surface Observed with Scanning Tunneling Microscopy. Angewandte Chemie International Edition in English, 1997, 36, 2601-2603.	4.4	142
60	Multifunctional system for combined chemodynamic–photodynamic therapy employing the endothelin axis based on conjugated polymer nanoparticles. Polymer Chemistry, 0, , .	1.9	7