Joachim Denner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8733950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of Human Endogenous Retrovirus K in Melanomas and Melanoma Cell Lines. Cancer Research, 2005, 65, 4172-4180.	0.9	208
2	Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation, 2014, 21, 309-323.	2.8	190
3	Infection Barriers to Successful Xenotransplantation Focusing on Porcine Endogenous Retroviruses. Clinical Microbiology Reviews, 2012, 25, 318-343.	13.6	175
4	Knockdown of porcine endogenous retrovirus (PERV) expression by PERVâ€specific shRNA in transgenic pigs. Xenotransplantation, 2008, 15, 36-45.	2.8	156
5	No PERV transmission during a clinical trial of pig islet cell transplantation. Virus Research, 2017, 227, 34-40.	2.2	134
6	Efficient production of multi-modified pigs for xenotransplantation by â€~combineering', gene stacking and gene editing. Scientific Reports, 2016, 6, 29081.	3.3	129
7	Transspecies Transmission of the Endogenous Koala Retrovirus. Journal of Virology, 2006, 80, 5651-5654.	3.4	103
8	Neutralizing antibodies against conserved domains of p15E of porcine endogenous retroviruses: basis for a vaccine for xenotransplantation?. Virology, 2003, 307, 406-413.	2.4	97
9	Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology, 2003, 314, 125-133.	2.4	95
10	Recombinant porcine endogenous retroviruses (PERV-A/C): a new risk for xenotransplantation?. Archives of Virology, 2008, 153, 1421-1426.	2.1	93
11	Porcine Endogenous Retroviruses Inhibit Human Immune Cell Function: Risk for Xenotransplantation?. Virology, 2000, 268, 87-93.	2.4	88
12	Porcine endogenous retroviruses: no infection in patients treated with a bioreactor based on porcine liver cells. Journal of Clinical Virology, 2003, 28, 141-154.	3.1	88
13	Expression and function of endogenous retroviruses in the placenta. Apmis, 2016, 124, 31-43.	2.0	87
14	Chapter 5: Strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation, 2009, 16, 239-248.	2.8	86
15	Koala retroviruses: characterization and impact on the life of koalas. Retrovirology, 2013, 10, 108.	2.0	83
16	Distribution and expression of porcine endogenous retroviruses in multiâ€ŧransgenic pigs generated for xenotransplantation. Xenotransplantation, 2009, 16, 64-73.	2.8	79
17	The immunosuppressive peptide of HIV-1. Aids, 1994, 8, 1063-1072.	2.2	78
18	The Transmembrane Protein of the Human Endogenous Retrovirus - K (HERV-K) Modulates Cytokine Release and Gene Expression. PLoS ONE, 2013, 8, e70399.	2.5	76

#	Article	IF	CITATIONS
19	Porcine endogenous retroviruses: in vitro host range and attempts to establish small animal models. Journal of General Virology, 2001, 82, 837-844.	2.9	76
20	Immunosuppression by Retroviruses: Implications for Xenotransplantation. Annals of the New York Academy of Sciences, 1998, 862, 75-86.	3.8	75
21	Sensitive and specific immunological detection methods for porcine endogenous retroviruses applicable to experimental—and clinical xenotransplantation. Xenotransplantation, 2001, 8, 125-135.	2.8	73
22	Why was PERV not transmitted during preclinical and clinical xenotransplantation trials and after inoculation of animals?. Retrovirology, 2018, 15, 28.	2.0	73
23	Inhibition of porcine endogenous retroviruses by RNA interference: increasing the safety of xenotransplantation. Virology, 2004, 325, 18-23.	2.4	71
24	Absence of transmission of potentially xenotic viruses in a prospective pig to primate islet xenotransplantation study. Journal of Medical Virology, 2008, 80, 2046-2052.	5.0	71
25	Differences in Release and Determination of Subtype of Porcine Endogenous Retroviruses Produced by Stimulated Normal Pig Blood Cells. Intervirology, 2003, 46, 17-24.	2.8	68
26	How Active Are Porcine Endogenous Retroviruses (PERVs)?. Viruses, 2016, 8, 215.	3.3	64
27	Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival. Scientific Reports, 2020, 10, 17531.	3.3	60
28	Expression of porcine endogenous retroviruses (PERV) in different organs of a pig. Virology, 2012, 433, 329-336.	2.4	59
29	Regulation of Clinical Xenotransplantation—Time for a Reappraisal. Transplantation, 2017, 101, 1766-1769.	1.0	57
30	Pig-to-non-human primate heart transplantation: The final step toward clinical xenotransplantation?. Journal of Heart and Lung Transplantation, 2020, 39, 751-757.	0.6	56
31	Recent Progress in Xenotransplantation, with Emphasis on Virological Safety. Annals of Transplantation, 2016, 21, 717-727.	0.9	56
32	Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs). Virology, 2011, 411, 78-86.	2.4	55
33	Xenotransplantation and porcine cytomegalovirus. Xenotransplantation, 2015, 22, 329-335.	2.8	54
34	Hepatitis E virus (HEV)—The Future. Viruses, 2019, 11, 251.	3.3	53
35	Xenotransplantation and Hepatitis E virus. Xenotransplantation, 2015, 22, 167-173.	2.8	50
36	Porcine Circoviruses and Xenotransplantation Viruses 2017 9 83	3.3	50

3

#	Article	IF	CITATIONS
37	Detection of PCV3 in German wild boars. Virology Journal, 2019, 16, 25.	3.4	49
38	Modulation of Cytokine Release and Gene Expression by the Immunosuppressive Domain of gp41 of HIV-1. PLoS ONE, 2013, 8, e55199.	2.5	48
39	Can Antiretroviral Drugs Be Used to Treat Porcine Endogenous Retrovirus (PERV) Infection after Xenotransplantation?. Viruses, 2017, 9, 213.	3.3	48
40	Longâ€ŧerm effects of PERVâ€specific RNA interference in transgenic pigs. Xenotransplantation, 2012, 19, 112-121.	2.8	47
41	First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Chapter 2a: source pigs—preventing xenozoonoses. Xenotransplantation, 2016, 23, 25-31.	2.8	45
42	Expression of porcine endogenous retroviruses (PERVs) in melanomas of Munich miniature swine (MMS) Troll. Veterinary Microbiology, 2007, 123, 53-68.	1.9	44
43	Will Genetic Engineering Carry Xenotransplantation of Pig Islets to the Clinic?. Current Diabetes Reports, 2018, 18, 103.	4.2	44
44	Characterisation of a human cell-adapted porcine endogenous retrovirus PERV-A/C. Annals of Transplantation, 2010, 15, 45-54.	0.9	44
45	Porcine endogenous retroviruses (PERVs): Generation of specific antibodies, development of an immunoperoxidase†assay (IPA) and inhibition by AZT. Xenotransplantation, 2001, 8, 310-316.	2.8	41
46	Development of sensitive methods for detection of porcine endogenous retrovirus-C (PERV-C) in the genome of pigs. Journal of Virological Methods, 2011, 175, 60-65.	2.1	41
47	Screening pigs for xenotransplantation: prevalence and expression of porcine endogenous retroviruses in <scp>G</scp> Ķttingen minipigs. Xenotransplantation, 2013, 20, 148-156.	2.8	41
48	Extended Microbiological Characterization of Göttingen Minipigs in the Context of Xenotransplantation: Detection and Vertical Transmission of Hepatitis E Virus. PLoS ONE, 2015, 10, e0139893.	2.5	41
49	Porcine endogenous retroviruses: Quantification of the copy number in cell lines, pig breeds, and organs. Xenotransplantation, 2018, 25, e12445.	2.8	40
50	Antibodies neutralizing feline leukaemia virus (FeLV) in cats immunized with the transmembrane envelope protein p15E. Immunology, 2006, 117, 229-237.	4.4	38
51	Transspecies transmissions of retroviruses: New cases. Virology, 2007, 369, 229-233.	2.4	38
52	Preventing transfer of infectious agents. International Journal of Surgery, 2015, 23, 306-311.	2.7	38
53	Extended microbiological characterization of Göttingen minipigs: porcine cytomegalovirus and other viruses. Xenotransplantation, 2016, 23, 490-496.	2.8	38
54	First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Chapter 5: recipient monitoring and response plan for preventing disease transmission. Xenotransplantation, 2016, 23, 53-59.	2.8	38

#	Article	IF	CITATIONS
55	New PCR diagnostic systems for the detection and quantification of porcine cytomegalovirus (PCMV). Archives of Virology, 2016, 161, 1159-1168.	2.1	38
56	The porcine virome and xenotransplantation. Virology Journal, 2017, 14, 171.	3.4	37
57	Reduction of the survival time of pig xenotransplants by porcine cytomegalovirus. Virology Journal, 2018, 15, 171.	3.4	37
58	A new Western blot assay for the detection of porcine cytomegalovirus (PCMV). Journal of Immunological Methods, 2016, 437, 37-42.	1.4	36
59	Early weaning completely eliminates porcine cytomegalovirus from a newly established pig donor facility for xenotransplantation. Xenotransplantation, 2018, 25, e12449.	2.8	35
60	Why all blood donations should be tested for hepatitis E virus (HEV). BMC Infectious Diseases, 2019, 19, 541.	2.9	35
61	No in vivo infection of triple immunosuppressed nonâ€human primates after inoculation with high titers of porcine endogenous retroviruses*. Xenotransplantation, 2009, 16, 34-44.	2.8	34
62	The transmembrane proteins contribute to immunodeficiencies induced by HIV-1 and other retroviruses. Aids, 2014, 28, 1081-1090.	2.2	33
63	Cytotoxic Effects during Knock Out of Multiple Porcine Endogenous Retrovirus (PERV) Sequences in the Pig Genome by Zinc Finger Nucleases (ZFN). PLoS ONE, 2015, 10, e0122059.	2.5	33
64	Increased titers of neutralizing antibodies after immunization with both envelope proteins of the porcine endogenous retroviruses (PERVs). Virology Journal, 2012, 9, 260.	3.4	32
65	Is it currently possible to evaluate the risk posed by <scp>PERV</scp> s for clinical xenotransplantation?. Xenotransplantation, 2018, 25, e12403.	2.8	32
66	Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses, 2019, 11, 1108.	3.3	32
67	Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses, 2021, 13, 2156.	3.3	32
68	Transmission of Porcine Circovirus 3 (PCV3) by Xenotransplantation of Pig Hearts into Baboons. Viruses, 2019, 11, 650.	3.3	31
69	Single mutations in the transmembrane envelope protein abrogate the immunosuppressive property of HIV-1. Retrovirology, 2012, 9, 67.	2.0	30
70	Paving the Path toward Porcine Organs for Transplantation. New England Journal of Medicine, 2017, 377, 1891-1893.	27.0	29
71	Effective Detection of Porcine Cytomegalovirus Using Non-Invasively Taken Samples from Piglets. Viruses, 2017, 9, 9.	3.3	29
72	Distribution of Porcine Cytomegalovirus in Infected Donor Pigs and in Baboon Recipients of Pig Heart Transplantation. Viruses, 2018, 10, 66.	3.3	27

#	Article	IF	CITATIONS
73	Pathways to Clinical Cardiac Xenotransplantation. Transplantation, 2021, 105, 1930-1943.	1.0	27
74	Increased Neutralizing Antibody Response after Simultaneous Immunization with Leucogen and the Feline Leukemia Virus Transmembrane Protein. Intervirology, 2011, 54, 78-86.	2.8	26
75	Lack of antiviral antibody response in koalas infected with koala retroviruses (KoRV). Virus Research, 2015, 198, 30-34.	2.2	26
76	Improved pig donor screening including newly identified variants of porcine endogenous retrovirus-C (PERV-C). Archives of Virology, 2013, 158, 341-348.	2.1	25
77	Absence of PERV specific humoral immune response in baboons after transplantation of porcine cells or organs. Transplant International, 2002, 15, 361-368.	1.6	24
78	Porcine endogenous retrovirus infection of human peripheral blood mononuclear cells. Xenotransplantation, 2015, 22, 151-152.	2.8	24
79	Islet cell transplantation from Göttingen minipigs to cynomolgus monkeys: analysis of virus safety. Xenotransplantation, 2016, 23, 320-327.	2.8	24
80	Inactivation of porcine endogenous retrovirus in pigs using <scp>CRISPR</scp> as9, editorial commentary. Xenotransplantation, 2017, 24, e12363.	2.8	24
81	A Comprehensive Strategy for Screening for Xenotransplantation-Relevant Viruses in a Second Isolated Population of GA¶ttingen Minipigs. Viruses, 2020, 12, 38.	3.3	24
82	Sensitive detection systems for infectious agents in xenotransplantation*. Xenotransplantation, 2020, , e12594.	2.8	23
83	Immunization with the transmembrane protein of a retrovirus, feline leukemia virus: Absence of antigenemia following challenge. Antiviral Research, 2011, 89, 119-123.	4.1	22
84	Transspecies Transmission of Gammaretroviruses and the Origin of the Gibbon Ape Leukaemia Virus (GaLV) and the Koala Retrovirus (KoRV). Viruses, 2016, 8, 336.	3.3	22
85	Immunological methods for the detection of porcine lymphotropic herpesviruses (PLHV). Journal of Virological Methods, 2016, 233, 72-77.	2.1	22
86	The Immunosuppressive Peptide of HIV-1 Inhibits T and B Lymphocyte Stimulation. Journal of Acquired Immune Deficiency Syndromes, 1996, 12, 442-450.	0.3	22
87	Porcine Endogenous Retroviruses PERV-A and PERV-B Infect neither Mouse Cells in vitro nor SCID Mice in vivo. Intervirology, 2005, 48, 167-173.	2.8	21
88	Neutralization of porcine endogenous retrovirus by antibodies against the membrane-proximal external region of the transmembrane envelope protein. Journal of General Virology, 2013, 94, 643-651.	2.9	21
89	Novel neutralising antibodies targeting the N-terminal helical region of the transmembrane envelope protein p15E of the porcine endogenous retrovirus (PERV). Immunologic Research, 2014, 58, 9-19.	2.9	21
90	Microbiological characterization of a newly established pig breed, Aachen Minipigs. Xenotransplantation, 2016, 23, 159-167.	2.8	21

#	Article	lF	CITATIONS
91	Investigation of membrane protein—protein interactions using correlative FRET-PLA. BioTechniques, 2014, 57, 188-198.	1.8	20
92	Advances in organ transplant from pigs. Science, 2017, 357, 1238-1239.	12.6	20
93	Level of acceptance of islet cell and kidney xenotransplants by personnel of hospitals with and without experience in clinical xenotransplantation. Xenotransplantation, 2017, 24, e12315.	2.8	20
94	The porcine cytomegalovirus (PCMV) will not stop xenotransplantation. Xenotransplantation, 2022, 29, .	2.8	19
95	Immunising with the transmembrane envelope proteins of different retroviruses including HIV-1. Human Vaccines and Immunotherapeutics, 2013, 9, 462-470.	3.3	18
96	Antibody Cross-Reactivity between Porcine Cytomegalovirus (PCMV) and Human Herpesvirus-6 (HHV-6). Viruses, 2017, 9, 317.	3.3	16
97	Virus safety of islet cell transplantation from transgenic pigs to marmosets. Virus Research, 2015, 204, 95-102.	2.2	15
98	Elimination of porcine endogenous retroviruses from pig cells. Xenotransplantation, 2015, 22, 411-412.	2.8	14
99	Virological and Parasitological Characterization of Mini-LEWE Minipigs Using Improved Screening Methods and an Overview of Data on Various Minipig Breeds. Microorganisms, 2021, 9, 2617.	3.6	13
100	Copy Number and Prevalence of Porcine Endogenous Retroviruses (PERVs) in German Wild Boars. Viruses, 2020, 12, 419.	3.3	12
101	The origin of porcine endogenous retroviruses (PERVs). Archives of Virology, 2021, 166, 1007-1013.	2.1	12
102	Porcine Lymphotropic Herpesviruses (PLHVs) and Xenotranplantation. Viruses, 2021, 13, 1072.	3.3	12
103	High Prevalence of Recombinant Porcine Endogenous Retroviruses (PERV-A/Cs) in Minipigs: A Review on Origin and Presence. Viruses, 2021, 13, 1869.	3.3	12
104	No transmission of porcine endogenous retroviruses (PERVs) in a long-term pig to rat xenotransplantation model and no infection of immunosuppressed rats. Annals of Transplantation, 2008, 13, 20-31.	0.9	12
105	Risk of pathogenic virus transmission by somatic cell nuclear transfer: implications for xenotransplantation. Biology of Reproduction, 2022, 107, 717-722.	2.7	12
106	Induction of neutralizing antibodies specific for the envelope proteins of the koala retrovirus by immunization with recombinant proteins or with DNA. Virology Journal, 2015, 12, 68.	3.4	11
107	Xenotransplantation of islet cells: what can the nonâ€human primate model bring for the evaluation of efficacy and safety?. Xenotransplantation, 2015, 22, 231-235.	2.8	9
108	Xenotransplantation — A special case of One Health. One Health, 2017, 3, 17-22.	3.4	9

#	Article	IF	CITATIONS
109	Function of a retroviral envelope protein in the placenta of a viviparous lizard. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13315-13317.	7.1	9
110	Are there better assays to evaluate the risk of transmission of porcine endogenous retroviruses (PERVs) to human cells?. Xenotransplantation, 2019, 26, e12510.	2.8	9
111	The large extracellular loop of CD63 interacts with gp41 of HIV-1 and is essential for establishing the virological synapse. Scientific Reports, 2021, 11, 10011.	3.3	8
112	Absence of PERV specific humoral immune response in baboons after transplantation of porcine cells or organs. Transplant International, 2002, 15, 361-8.	1.6	8
113	Lack of antibody response in pigs immunized with the transmembrane envelope protein of porcine endogenous retroviruses. Journal of General Virology, 2014, 95, 1827-1831.	2.9	7
114	Detection of koala retrovirus subgroup B (KoRV-B) in animals housed at European zoos. Archives of Virology, 2016, 161, 3549-3553.	2.1	7
115	Antigenic and immunosuppressive properties of a trimeric recombinant transmembrane envelope protein gp41 of HIV-1. PLoS ONE, 2017, 12, e0173454.	2.5	7
116	Rare isolation of human-tropic recombinant porcine endogenous retroviruses PERV-A/C from Göttingen minipigs. Virology Journal, 2022, 19, 30.	3.4	7
117	Absence of porcine endogenous retrovirus (PERV) production from pig lymphoma cell lines. Virus Research, 2021, 295, 198286.	2.2	6
118	Hepatic Failure After Pig Heart Transplantation Into a Baboon: No Involvement of Porcine Hepatitis E Virus. Annals of Transplantation, 2016, 21, 12-6.	0.9	6
119	Immunosuppressive properties of retroviruses. European Journal of Immunology, 2016, 46, 253-255.	2.9	5
120	Virological Characterization of Pigs with Erythema Multiforme. Microorganisms, 2022, 10, 652.	3.6	5
121	Improved split-ubiquitin screening technique to identify surface membrane protein-protein interactions. BioTechniques, 2015, 59, 63-73.	1.8	4
122	The immunosuppressive domain of the transmembrane envelope protein gp41 of HIV-1 binds to human monocytes and B cells. Immunologic Research, 2016, 64, 721-729.	2.9	4
123	Sensitive methods and improved screening strategies are needed for the detection of pig viruses. Xenotransplantation, 2017, 24, e12303.	2.8	4
124	SARS-CoV-2 and enhancing antibodies. Journal of Clinical Virology, 2020, 128, 104424.	3.1	4
125	Unexpected low expression of porcine endogenous retroviruses (PERVs) in porcine expanded potential stem cells (EPSCs). Virus Research, 2021, 294, 198295.	2.2	4
126	Detection of cellâ€free pig DNA using integrated PERV sequences to monitor xenotransplant tissue damage and rejection. Xenotransplantation, 2021, 28, e12688.	2.8	4

#	Article	IF	CITATIONS
127	Human SAMHD1 restricts the xenotransplantation relevant porcine endogenous retrovirus (PERV) in non-dividing cells. Journal of General Virology, 2019, 100, 656-661.	2.9	4
128	Tolerance and immune response to the porcine endogenous retrovirus in German landrace pigs immunised with viral proteins. Virus Research, 2015, 208, 39-43.	2.2	3
129	Correlative Förster Resonance Electron Transferâ€Proximity Ligation Assay (FRETâ€PLA) Technique for Studying Interactions Involving Membrane Proteins. Current Protocols in Protein Science, 2016, 85, 29.17.1-29.17.13.	2.8	3
130	Does size matter?. Xenotransplantation, 2018, 25, e12383.	2.8	3
131	Absence of IL-10 production by human PBMCs co-cultivated with human cells expressing or secreting retroviral immunosuppressive domains. PLoS ONE, 2018, 13, e0200570.	2.5	3
132	Theme issue on infections and safety—An introduction. Xenotransplantation, 2018, 25, e12447.	2.8	3
133	Endogenous retroviruses expressed in human tumours cannot be used as targets for anti-tumour vaccines. Translational Oncology, 2021, 14, 100941.	3.7	3
134	Easy and cost-effective stable positioning of suspension cells during live-cell imaging. Journal of Biological Methods, 2017, 4, e80.	0.6	3
135	Animal Models of Alzheimer's Disease Should Be Controlled for Roseolovirus. Journal of Alzheimer's Disease, 2020, 77, 543-545.	2.6	2
136	By definition… Xenotransplantation, 2020, 27, e12599.	2.8	2
137	What does the PERV copy number tell us?. Xenotransplantation, 2022, 29, e12732.	2.8	2
138	Vaccination against the Koala Retrovirus (KoRV): Problems and Strategies. Animals, 2021, 11, 3555.	2.3	1
139	Cover Image, Volume 25, Issue 4. Xenotransplantation, 2018, 25, e12456.	2.8	Ο
140	Comment on: Endogenous retroviruses expressed in human tumours cannot be used as targets for anti-tumour vaccines. Translational Oncology, 2021, 14, 101041.	3.7	0