
## **Zhaoyang Wang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8733913/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF     | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 1  | Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors.<br>Nature Communications, 2017, 8, 14264.                                                       | 12.8   | 588       |
| 2  | Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution<br>Reaction. ACS Applied Materials & Interfaces, 2016, 8, 19386-19392.                       | 8.0    | 284       |
| 3  | Low-Crystalline Bimetallic Metal–Organic Framework Electrocatalysts with Rich Active Sites for<br>Oxygen Evolution. ACS Energy Letters, 2019, 4, 285-292.                                     | 17.4   | 255       |
| 4  | Copper–Nickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazineâ€Assisted<br>Electrolytic Hydrogen Production. Advanced Energy Materials, 2019, 9, 1900390.                | 19.5   | 243       |
| 5  | Upraising the O 2p Orbital by Integrating Ni with MoO <sub>2</sub> for Accelerating Hydrogen Evolution Kinetics. ACS Catalysis, 2019, 9, 2275-2285.                                           | 11.2   | 165       |
| 6  | Density Functional Theory for Electrocatalysis. Energy and Environmental Materials, 2022, 5, 157-185.                                                                                         | 12.8   | 95        |
| 7  | Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy, 2018, 54, 360-366.                                                | 16.0   | 82        |
| 8  | Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study. Nano Research, 2022, 15, 3073-3081.                                          | 10.4   | 58        |
| 9  | Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Research, 2016, 9, 1012-1021.                             | 10.4   | 39        |
| 10 | Recent Advances in Nanowire-Biosystem Interfaces: From Chemical Conversion, Energy Production to Electrophysiology. CheM, 2018, 4, 1538-1559.                                                 | 11.7   | 34        |
| 11 | Introducing Na2SO4 in aqueous ZnSO4 electrolyte realizes superior electrochemical performance in zinc-ion hybrid capacitor. Materials Today Energy, 2020, 18, 100529.                         | 4.7    | 32        |
| 12 | Activated carbon clothes for wide-voltage high-energy-density aqueous symmetric supercapacitors.<br>Chinese Chemical Letters, 2020, 31, 1620-1624.                                            | 9.0    | 31        |
| 13 | Establishing a theoretical insight for penta-coordinated iron-nitrogen-carbon catalysts toward oxygen reaction. Nano Research, 2022, 15, 6067-6075.                                           | 10.4   | 28        |
| 14 | 3D Nitrogenâ€Doped Graphene Encapsulated Metallic Nickel–Iron Alloy Nanoparticles for Efficient<br>Bifunctional Oxygen Electrocatalysis. Chemistry - A European Journal, 2020, 26, 4044-4051. | 3.3    | 25        |
| 15 | Theoretical insights into dual-atom catalysts for the oxygen reduction reaction: the crucial role of orbital polarization. Journal of Materials Chemistry A, 2022, 10, 9150-9160.             | 10.3   | 25        |
| 16 | A Synergistic Naâ€Mnâ€O Composite Cathodes for Highâ€Capacity Naâ€Ion Storage. Advanced Energy Materials,<br>2018, 8, 1802180.                                                                | ' 19.5 | 21        |
| 17 | In-situ selective surface engineering of graphene micro-supercapacitor chips. Nano Research, 2022, 15, 1492-1499.                                                                             | 10.4   | 19        |
| 18 | Hierarchical Bimetallic Selenide Nanosheetâ€Constructed Nanotubes for Efficient Electrocatalytic<br>Water Oxidation. ChemElectroChem, 2019, 6, 331-335.                                       | 3.4    | 15        |

ZHAOYANG WANG

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Crystalline/Amorphous Cobalt(II,III) Oxide Hybrid Electrocatalyst for Lithium–Air Batteries. Energy<br>Technology, 2017, 5, 568-579.                                                                          | 3.8  | 12        |
| 20 | A Durable Ni–Zn Microbattery with Ultrahighâ€Rate Capability Enabled by In Situ Reconstructed<br>Nanoporous Nickel with Epitaxial Phase. Small, 2021, 17, e2103136.                                             | 10.0 | 11        |
| 21 | Novel Two-Dimensional Metal-Based π-d Conjugated Nanosheets as Photocatalyst for Nitrogen<br>Reduction Reaction: The First-Principle Investigation. ACS Applied Materials & Interfaces, 2022, 14,<br>5384-5394. | 8.0  | 10        |
| 22 | Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity. Energy and Environmental Materials, 2023, 6, .                                    | 12.8 | 8         |
| 23 | Submerged-Plant-Inspired Five-Level-Synergetic hierarchical Single-Fe-Atom-Doped Micro-Electrodes<br>for High-Performance multifunctional electrocatalysis. Chemical Engineering Journal, 2022, 446,<br>136804. | 12.7 | 3         |