Xuexia Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8733657/publications.pdf

Version: 2024-02-01

567281 610901 24 954 15 24 citations h-index g-index papers 24 24 24 1145 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	New insights into an <scp>RNAi</scp> approach for plant defence against piercingâ€sucking and stemâ€borer insect pests. Plant, Cell and Environment, 2015, 38, 2277-2285.	5.7	158
2	Second-Generation Sequencing Supply an Effective Way to Screen RNAi Targets in Large Scale for Potential Application in Pest Insect Control. PLoS ONE, 2011, 6, e18644.	2.5	143
3	The OsmiR396–Os <scp>GRF</scp> 8–OsF3Hâ€flavonoid pathway mediates resistance to the brown planthopper in rice (<i>Oryza sativa</i>). Plant Biotechnology Journal, 2019, 17, 1657-1669.	8.3	110
4	Modulation of plant architecture by the miR156f–OsSPL7–OsGH3.8 pathway in rice. Journal of Experimental Botany, 2018, 69, 5117-5130.	4.8	97
5	Novel crosstalk between ethylene―and jasmonic acidâ€pathway responses to a piercing–sucking insect in rice. New Phytologist, 2020, 225, 474-487.	7.3	53
6	OsRAMOSA2 Shapes Panicle Architecture through Regulating Pedicel Length. Frontiers in Plant Science, 2017, 8, 1538.	3.6	45
7	OsmiR396/growth regulating factor modulate rice grain size through direct regulation of embryo-specific miR408. Plant Physiology, 2021, 186, 519-533.	4.8	36
8	Identification of differential expression genes associated with host selection and adaptation between two sibling insect species by transcriptional profile analysis. BMC Genomics, 2013, 14, 582.	2.8	30
9	Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling. BMC Genomics, 2012, 13, 687.	2.8	29
10	Microarray analysis of broad-spectrum resistance derived from an indica cultivar Rathu Heenati. Planta, 2012, 235, 829-840.	3.2	27
11	Lepidopteran insect speciesâ€specific, broadâ€spectrum, and systemic <scp>RNA</scp> interference by spraying ds <scp>RNA</scp> on larvae. Entomologia Experimentalis Et Applicata, 2015, 155, 218-228.	1.4	26
12	OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. Plant Cell Reports, 2018, 37, 993-1002.	5.6	25
13	RNAi pest control and enhanced BT insecticidal efficiency achieved by dsRNA of chymotrypsin-like genes in Ostrinia furnacalis. Journal of Pest Science, 2017, 90, 745-757.	3.7	23
14	OsHLH61-OsbHLH96 influences rice defense to brown planthopper through regulating the pathogen-related genes. Rice, 2019, 12, 9.	4.0	23
15	The in vivo dsRNA Cleavage Has Sequence Preference in Insects. Frontiers in Physiology, 2018, 9, 1768.	2.8	19
16	Advances in the Development of Microbial Double-Stranded RNA Production Systems for Application of RNA Interference in Agricultural Pest Control. Frontiers in Bioengineering and Biotechnology, 2021, 9, 753790.	4.1	19
17	OsMADS1 Represses microRNA172 in Elongation of Palea/Lemma Development in Rice. Frontiers in Plant Science, 2016, 7, 1891.	3.6	16
18	Bab2 Functions as an Ecdysone-Responsive Transcriptional Repressor during Drosophila Development. Cell Reports, 2020, 32, 107972.	6.4	15

Xuexia Miao

#	Article	IF	CITATION
19	Knockout of the HaREase Gene Improves the Stability of dsRNA and Increases the Sensitivity of Helicoverpa armigera to Bacillus thuringiensis Toxin. Frontiers in Physiology, 2019, 10, 1368.	2.8	14
20	miR156f integrates panicle architecture through genetic modulation of branch number and pedicel length pathways. Rice, 2019, 12, 40.	4.0	14
21	Identification of the rice genes and metabolites involved in dual resistance against brown planthopper and rice blast fungus. Plant, Cell and Environment, 2022, 45, 1914-1929.	5.7	14
22	Proteomic Analysis of Silkworm Antennae. Journal of Chemical Ecology, 2015, 41, 1037-1042.	1.8	12
23	Identification and phylogeny of five maleâ€specific lethal genes in the silkworm <i>Bombyx mori</i> Entomological Research, 2008, 38, S48.	1.1	3
24	The Novel Agrotis ipsilon Nora Virus Confers Deleterious Effects to the Fitness of Spodoptera frugiperda (Lepidoptera: Noctuidae). Frontiers in Microbiology, 2021, 12, 727202.	3.5	3