
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8732863/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Copperâ€Free Click Chemistry: Applications in Drug Delivery, Cell Tracking, and Tissue Engineering. Advanced Materials, 2022, 34, e2107192.	11.1	58
2	Heart Rate Variability as a Potential Indicator of Cancer Pain in a Mouse Model of Peritoneal Metastasis. Sensors, 2022, 22, 2152.	2.1	3
3	Sustained and Long-Term Release of Doxorubicin from PLGA Nanoparticles for Eliciting Anti-Tumor Immune Responses. Pharmaceutics, 2022, 14, 474.	2.0	15
4	Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Advanced Drug Delivery Reviews, 2022, 186, 114344.	6.6	33
5	Gold-Nanorod-Based Scaffolds for Wound-Healing Applications. ACS Applied Nano Materials, 2022, 5, 8640-8648.	2.4	9
6	In vivo tracking of bioorthogonally labeled T-cells for predicting therapeutic efficacy of adoptive T-cell therapy. Journal of Controlled Release, 2021, 329, 223-236.	4.8	15
7	Predicting in vivo therapeutic efficacy of bioorthogonally labeled endothelial progenitor cells in hind limb ischemia models via non-invasive fluorescence molecular tomography. Biomaterials, 2021, 266, 120472.	5.7	11
8	Intracellular Uptake Mechanism of Bioorthogonally Conjugated Nanoparticles on Metabolically Engineered Mesenchymal Stem Cells. Bioconjugate Chemistry, 2021, 32, 199-214.	1.8	8
9	Bioorthogonally surfaceâ€edited extracellular vesicles based on metabolic glycoengineering for CD44â€mediated targeting of inflammatory diseases. Journal of Extracellular Vesicles, 2021, 10, e12077.	5.5	30
10	Visible-Light-Triggered Prodrug Nanoparticles Combine Chemotherapy and Photodynamic Therapy to Potentiate Checkpoint Blockade Cancer Immunotherapy. ACS Nano, 2021, 15, 12086-12098.	7.3	93
11	Theragnostic Glycol Chitosan-Conjugated Gold Nanoparticles for Photoacoustic Imaging of Regional Lymph Nodes and Delivering Tumor Antigen to Lymph Nodes. Nanomaterials, 2021, 11, 1700.	1.9	15
12	Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. Journal of Materials Chemistry B, 2021, 9, 3983-4001.	2.9	28
13	Pharmaceutical Aspects of Nanocarriers for Smart Anticancer Therapy. Pharmaceutics, 2021, 13, 1875.	2.0	8
14	Tumorâ€Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Advanced Materials, 2020, 32, e2002197.	11.1	78
15	Tumor-Targeting Glycol Chitosan Nanoparticles for Image-Guided Surgery of Rabbit Orthotopic VX2 Lung Cancer. Pharmaceutics, 2020, 12, 621.	2.0	14
16	Doxorubicin-Loaded PLGA Nanoparticles for Cancer Therapy: Molecular Weight Effect of PLGA in Doxorubicin Release for Controlling Immunogenic Cell Death. Pharmaceutics, 2020, 12, 1165.	2.0	37
17	Deep Tumor Penetration of Doxorubicin-Loaded Glycol Chitosan Nanoparticles Using High-Intensity Focused Ultrasound. Pharmaceutics, 2020, 12, 974.	2.0	15
18	Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy. Biomaterials, 2020, 261, 120347.	5.7	60

#	Article	IF	CITATIONS
19	In Situ One-Step Fluorescence Labeling Strategy of Exosomes via Bioorthogonal Click Chemistry for Real-Time Exosome Tracking In Vitro and In Vivo. Bioconjugate Chemistry, 2020, 31, 1562-1574.	1.8	55
20	Recent Trends in <i>In Situ</i> Enzyme-Activatable Prodrugs for Targeted Cancer Therapy. Bioconjugate Chemistry, 2020, 31, 1012-1024.	1.8	39
21	Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment. ACS Applied Materials & Interfaces, 2020, 12, 33483-33491.	4.0	30
22	Tumor-targeting glycol chitosan nanocarriers: overcoming the challenges posed by chemotherapeutics. Expert Opinion on Drug Delivery, 2019, 16, 835-846.	2.4	6
23	Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics, 2019, 9, 7906-7923.	4.6	100
24	Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy. Biomaterials, 2019, 224, 119494.	5.7	48
25	Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke. ACS Nano, 2019, 13, 10991-11007.	7.3	53
26	Theranostic designs of biomaterials for precision medicine in cancer therapy. Biomaterials, 2019, 213, 119207.	5.7	73
27	Enhancing Systemic Delivery of Enzymatically Generated RNAi Nanocomplexes for Cancer Therapy. Advanced Therapeutics, 2019, 2, 1900014.	1.6	1
28	A Comparative Study on Albumin-Binding Molecules for Targeted Tumor Delivery through Covalent and Noncovalent Approach. Bioconjugate Chemistry, 2019, 30, 3107-3118.	1.8	20
29	Carrier-free nanoparticles of cathepsin B-cleavable peptide-conjugated doxorubicin prodrug for cancer targeting therapy. Journal of Controlled Release, 2019, 294, 376-389.	4.8	113
30	Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials, 2018, 178, 597-607.	5.7	117
31	<i>In situ</i> cross-linkable hyaluronic acid hydrogels using copper free click chemistry for cartilage tissue engineering. Polymer Chemistry, 2018, 9, 20-27.	1.9	57
32	Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging. Biomaterials, 2018, 150, 125-136.	5.7	79
33	Development of Biocompatible HA Hydrogels Embedded with a New Synthetic Peptide Promoting Cellular Migration for Advanced Wound Care Management. Advanced Science, 2018, 5, 1800852.	5.6	69
34	Nonimmunogenetic Viral Capsid Carrier with Cancer Targeting Activity. Advanced Science, 2018, 5, 1800494.	5.6	8
35	Iodinated Echogenic Glycol Chitosan Nanoparticles for X-ray CT/US Dual Imaging of Tumor. Nanotheranostics, 2018, 2, 117-127.	2.7	26
36	Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs. International Journal of Pharmaceutics, 2017, 520, 111-118.	2.6	48

#	Article	IF	CITATIONS
37	Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound. Journal of Controlled Release, 2017, 263, 68-78.	4.8	104
38	Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor. Molecular Pharmaceutics, 2017, 14, 1558-1570.	2.3	42
39	Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Biomaterials, 2017, 132, 28-36.	5.7	75
40	Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry inÂvivo. Biomaterials, 2017, 148, 1-15.	5.7	51
41	Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles. Journal of Controlled Release, 2017, 267, 223-231.	4.8	60
42	Caspase-3/-7-Specific Metabolic Precursor for Bioorthogonal Tracking of Tumor Apoptosis. Scientific Reports, 2017, 7, 16635.	1.6	44
43	Inorganic Nanoparticles for Image-Guided Therapy. Bioconjugate Chemistry, 2017, 28, 124-134.	1.8	77
44	The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts. International Journal of Nanomedicine, 2017, Volume 12, 6089-6105.	3.3	22
45	Dexamethasone-loaded Polymeric Nanoconstructs for Monitoring and Treating Inflammatory Bowel Disease. Theranostics, 2017, 7, 3653-3666.	4.6	47
46	Deep tissue penetration of nanoparticles using pulsed-high intensity focused ultrasound. Nano Convergence, 2017, 4, 30.	6.3	18
47	Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation. Theranostics, 2017, 7, 9-22.	4.6	31
48	Cathepsinâ€B‧pecific Metabolic Precursor for Inâ€Vivo Tumor‧pecific Fluorescence Imaging. Angewandt Chemie, 2016, 128, 14918-14923.	e 1.6	13
49	Cathepsinâ€B‧pecific Metabolic Precursor for Inâ€Vivo Tumor‧pecific Fluorescence Imaging. Angewandt Chemie - International Edition, 2016, 55, 14698-14703.	e 7.2	81
50	Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert Opinion on Drug Delivery, 2016, 13, 239-252.	2.4	81
51	Cathepsin B Imaging to Predict Quality of Engineered Cartilage. Macromolecular Bioscience, 2015, 15, 1224-1232.	2.1	3
52	A versatile gold cross-linked nanoparticle based on triblock copolymer as the carrier of doxorubicin. RSC Advances, 2015, 5, 70352-70360.	1.7	11
53	Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials, 2015, 53, 341-348.	5.7	116
54	Gold-installed biostable nanocomplexes for tumor-targeted siRNA delivery in vivo. Chemical Communications, 2015, 51, 16656-16659.	2.2	15

#	Article	IF	CITATIONS
55	Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo. Journal of Controlled Release, 2015, 220, 631-641.	4.8	76
56	A polymeric conjugate foreignizing tumor cells for targeted immunotherapy in vivo. Journal of Controlled Release, 2015, 199, 98-105.	4.8	29
57	Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials, 2014, 35, 1735-1743.	5.7	296
58	Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. Journal of Controlled Release, 2014, 174, 98-108.	4.8	190
59	Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: Sequential delivery of doxorubicin and Bcl-2 siRNA. Scientific Reports, 2014, 4, 6878.	1.6	118
60	Self-assembled dextran sulphate nanoparticles for targeting rheumatoid arthritis. Chemical Communications, 2013, 49, 10349-10351.	2.2	57
61	Photo-crosslinked hyaluronic acid nanoparticles with improved stability for inÂvivo tumor-targeted drug delivery. Biomaterials, 2013, 34, 5273-5280.	5.7	95
62	Bioreducible hyaluronic acid conjugates as siRNA carrier for tumor targeting. Journal of Controlled Release, 2013, 172, 653-661.	4.8	60
63	Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: Mineralization and its effect on tumor targetability in vivo. Journal of Controlled Release, 2013, 168, 105-114.	4.8	94
64	Liverâ€ S pecific and Echogenic Hyaluronic Acid Nanoparticles Facilitating Liver Cancer Discrimination. Advanced Functional Materials, 2013, 23, 5518-5529.	7.8	39
65	Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials, 2012, 33, 6186-6193.	5.7	139
66	Amphiphilic hyaluronic acid-based nanoparticles for tumor-specific optical/MR dual imaging. Journal of Materials Chemistry, 2012, 22, 10444.	6.7	28
67	A Facile, One-Step Nanocarbon Functionalization for Biomedical Applications. Nano Letters, 2012, 12, 3613-3620.	4.5	82
68	Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials, 2012, 33, 1190-1200.	5.7	237
69	Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials, 2012, 33, 3980-3989.	5.7	268
70	Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy. Journal of Controlled Release, 2012, 160, 692-698.	4.8	33
71	Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. Journal of Controlled Release, 2012, 162, 111-118.	4.8	67
72	Bioreducible Block Copolymers Based on Poly(Ethylene Glycol) and Poly(\hat{I}^3 -Benzyl) Tj ETQqO O O rgBT /Overlock 1	0 Tf 50 67 1.8	Td (<scp>l< 132</scp>

1924-1931.

#	Article	IF	CITATIONS
73	Smart Nanocarrier Based on PEGylated Hyaluronic Acid for Cancer Therapy. ACS Nano, 2011, 5, 8591-8599.	7.3	360
74	Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) andÂPluronic® for tumor-targeted delivery of docetaxel. Biomaterials, 2011, 32, 7181-7190.	5.7	283
75	PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials, 2011, 32, 1880-1889.	5.7	298
76	Hydrotropic hyaluronic acid conjugates: Synthesis, characterization, and implications as a carrier of paclitaxel. International Journal of Pharmaceutics, 2010, 394, 154-161.	2.6	88
77	Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials, 2010, 31, 106-114.	5.7	500