
## James Hough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8732841/publications.pdf Version: 2024-02-01



IMMES HOUCH

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings.<br>Classical and Quantum Gravity, 2002, 19, 897-917.                                            | 4.0  | 274       |
| 2  | Measurement of the Earth tides with a MEMS gravimeter. Nature, 2016, 531, 614-617.                                                                                                                | 27.8 | 237       |
| 3  | Titania-doped tantala/silica coatings for gravitational-wave detection. Classical and Quantum Gravity, 2007, 24, 405-415.                                                                         | 4.0  | 205       |
| 4  | Gravitational Wave Detection by Interferometry (Ground and Space). Living Reviews in Relativity, 2011, 14, 5.                                                                                     | 26.7 | 154       |
| 5  | A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity, 2020, 37, 165003.                                                                             | 4.0  | 120       |
| 6  | Thermal noise from optical coatings in gravitational wave detectors. Applied Optics, 2006, 45, 1569.                                                                                              | 2.1  | 111       |
| 7  | Design and development of the advanced LIGO monolithic fused silica suspension. Classical and Quantum Gravity, 2012, 29, 035003.                                                                  | 4.0  | 88        |
| 8  | GEO 600 triple pendulum suspension system: Seismic isolation and control. Review of Scientific Instruments, 2000, 71, 2539-2545.                                                                  | 1.3  | 81        |
| 9  | Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors. Physical Review D, 2004, 70, . | 4.7  | 73        |
| 10 | Experimental measurements of coating mechanical loss factors. Classical and Quantum Gravity, 2004, 21, S1059-S1065.                                                                               | 4.0  | 59        |
| 11 | Gravitational Wave Detection by Interferometry (Ground and Space). Living Reviews in Relativity, 2000, 3, 3.                                                                                      | 26.7 | 52        |
| 12 | Very HighQMeasurements on a Fused Silica Monolithic Pendulum for Use in Enhanced Gravity Wave<br>Detectors. Physical Review Letters, 2000, 85, 2442-2445.                                         | 7.8  | 51        |
| 13 | Probing the atomic structure of amorphous Ta2O5 coatings. Applied Physics Letters, 2011, 98, .                                                                                                    | 3.3  | 50        |
| 14 | The Glasgow 10 m prototype laser interferometric gravitational wave detector. Review of Scientific<br>Instruments, 1995, 66, 4447-4452.                                                           | 1.3  | 48        |
| 15 | Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing. Physical Review Letters, 2018, 120, 263602.                                                                  | 7.8  | 47        |
| 16 | Aspects of the suspension system for GEO 600. Review of Scientific Instruments, 1998, 69, 3055-3061.                                                                                              | 1.3  | 41        |
| 17 | Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy. Physical Review Letters, 2018, 121, 191101.                                                    | 7.8  | 40        |
| 18 | Invited Article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions. Review of Scientific Instruments, 2011, 82, 011301.       | 1.3  | 37        |

James Hough

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Thermal noise reduction and absorption optimization via multimaterial coatings. Physical Review D, 2015, 91, .                                                                                             | 4.7 | 33        |
| 20 | Finite element modelling of the mechanical loss of silica suspension fibres for advanced gravitational wave detectors. Classical and Quantum Gravity, 2009, 26, 215012.                                    | 4.0 | 32        |
| 21 | High Precision Detection of Change in Intermediate Range Order of Amorphous Zirconia-Doped<br>Tantala Thin Films Due to Annealing. Physical Review Letters, 2019, 123, 045501.                             | 7.8 | 29        |
| 22 | Field Tests of a Portable MEMS Gravimeter. Sensors, 2017, 17, 2571.                                                                                                                                        | 3.8 | 28        |
| 23 | Effect of elevated substrate temperature deposition on the mechanical losses in tantala thin film coatings. Classical and Quantum Gravity, 2018, 35, 075001.                                               | 4.0 | 26        |
| 24 | Mirror Coating Solution for the Cryogenic Einstein Telescope. Physical Review Letters, 2019, 122, 231102.                                                                                                  | 7.8 | 24        |
| 25 | Optical absorption of ion-beam sputtered amorphous silicon coatings. Physical Review D, 2016, 93, .                                                                                                        | 4.7 | 20        |
| 26 | Test of an 18â€mâ€long suspended modecleaner cavity. Review of Scientific Instruments, 1996, 67, 2443-2448.                                                                                                | 1.3 | 19        |
| 27 | Optical absorption of silicon nitride membranes at 1064Ânm and at 1550Ânm. Physical Review D, 2017, 96, .                                                                                                  | 4.7 | 17        |
| 28 | Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis. Scientific Reports, 2019, 9, 12944.                                                      | 3.3 | 17        |
| 29 | Modeling of multistage pendulums: Triple pendulum suspension for GEO 600. Review of Scientific<br>Instruments, 2000, 71, 2546-2551.                                                                        | 1.3 | 15        |
| 30 | Enhanced characteristics of fused silica fibers using laser polishing. Classical and Quantum Gravity, 2014, 31, 105006.                                                                                    | 4.0 | 15        |
| 31 | Demonstration of the Multimaterial Coating Concept to Reduce Thermal Noise in Gravitational-Wave<br>Detectors. Physical Review Letters, 2020, 125, 011102.                                                 | 7.8 | 15        |
| 32 | Active control of a balanced twoâ€stage pendulum vibration isolation system and its application to<br>laser interferometric gravity wave detectors. Review of Scientific Instruments, 1993, 64, 1330-1336. | 1.3 | 14        |
| 33 | Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors. Review of Scientific Instruments, 2011, 82, 044502.                        | 1.3 | 12        |
| 34 | Experimental results for nulling the effective thermal expansion coefficient of fused silica fibres under a static stress. Classical and Quantum Gravity, 2014, 31, 065010.                                | 4.0 | 12        |
| 35 | Microelectromechanical system gravimeters as a new tool for gravity imaging. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170291.                | 3.4 | 11        |
| 36 | Broadband Intensity Stabilization of a Diode-pumped Monolithic Miniature Nd: YAG Ring Laser. Journal of Modern Optics, 1994, 41, 1263-1269.                                                                | 1.3 | 9         |

James Hough

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Can piezoelectric accelerometers be used to actively damp the mechanical suspensions in laser interferometric gravitational wave detectors. Review of Scientific Instruments, 1996, 67, 633-640.                                                                            | 1.3 | 9         |
| 38 | Lowest observed surface and weld losses in fused silica fibres for gravitational wave detectors.<br>Classical and Quantum Gravity, 2020, 37, 195019.                                                                                                                        | 4.0 | 9         |
| 39 | Experimental demonstration of the use of a Fabry–Perot cavity as a mirror of variable reflectivity.<br>Review of Scientific Instruments, 1994, 65, 799-802.                                                                                                                 | 1.3 | 8         |
| 40 | Mechanical loss of a hydroxide catalysis bond between sapphire substrates and its effect on the sensitivity of future gravitational wave detectors. Physical Review D, 2016, 94, .                                                                                          | 4.7 | 8         |
| 41 | Laser phase-locking techniques for LISA: Experimental status. AIP Conference Proceedings, 1998, , .                                                                                                                                                                         | 0.4 | 7         |
| 42 | Measurements of beam geometry fluctuations of typical argonâ€ion and Nd:YAG lasers with relevance<br>to laser interferometer gravitational wave detectors. Review of Scientific Instruments, 1995, 66,<br>2760-2762.                                                        | 1.3 | 6         |
| 43 | Improved fused silica fibres for the advanced LIGO monolithic suspensions. Classical and Quantum Gravity, 2019, 36, 185018.                                                                                                                                                 | 4.0 | 6         |
| 44 | Large-scale Monolithic Fused-Silica Mirror Suspension for Third-Generation Gravitational-Wave Detectors. Physical Review Applied, 2022, 17, .                                                                                                                               | 3.8 | 4         |
| 45 | Bi-filar pendulum mode Q factor for silicate bonded pendulum. AIP Conference Proceedings, 2000, , .                                                                                                                                                                         | 0.4 | 3         |
| 46 | Gravitational wave: gamma-ray burst connections. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2007, 365, 1335-1342.                                                                                                            | 3.4 | 3         |
| 47 | The status of GEO600. AIP Conference Proceedings, 2000, , .                                                                                                                                                                                                                 | 0.4 | 2         |
| 48 | Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.                                                                                                                                                                                | 2.0 | 2         |
| 49 | Suspension design for GEO 600—an update. AlP Conference Proceedings, 2000, , .                                                                                                                                                                                              | 0.4 | 1         |
| 50 | An upper limit to the frequency noise associated with the relaxation oscillation of a monolithic Nd:YAG ring laser. Journal of Modern Optics, 2001, 48, 1129-1134.                                                                                                          | 1.3 | 0         |
| 51 | Perspective: Gravitational waves: "Invited article: CO2 laser production of fused silica fibers for use<br>in interferometric gravitational wave detector mirror suspensions―[Rev. Sci. Instrum. 82, 011301<br>(2011)]. Review of Scientific Instruments, 2011, 82, 010901. | 1.3 | 0         |
| 52 | THERMAL NOISE FROM OPTICAL COATINGS. , 2006, , .                                                                                                                                                                                                                            |     | 0         |
| 53 | DEVELOPMENTS TOWARD MONOLITHIC SUSPENSIONS FOR ADVANCED GRAVITATIONAL WAVE DETECTORS., 2008, .                                                                                                                                                                              |     | 0         |