
## Ashok Ajoy

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8732832/publications.pdf Version: 2024-02-01



Λεμοκ Λιον

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Beauty beyond the Eye: Color Centers in Diamond Particles for Imaging and Quantum Sensing Applications. Reviews and Advances in Chemistry, 2022, 12, 1-21.                                                        | 0.5  | 4         |
| 2  | Nuclear spin temperature reversal via continuous radio-frequency driving. Physical Review B, 2021, 103, .                                                                                                         | 3.2  | 3         |
| 3  | Magnetic field induced delocalization in hybrid electron-nuclear spin ensembles. Physical Review B, 2021, 103, .                                                                                                  | 3.2  | 6         |
| 4  | Background-free dual-mode optical and <sup>13</sup> C magnetic resonance imaging in diamond particles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .              | 7.1  | 13        |
| 5  | Low-field microwave-mediated optical hyperpolarization in optically pumped diamond. Journal of Magnetic Resonance, 2021, 331, 107021.                                                                             | 2.1  | 2         |
| 6  | Imaging Sequences for Hyperpolarized Solids. Molecules, 2021, 26, 133.                                                                                                                                            | 3.8  | 1         |
| 7  | Floquet Prethermalization with Lifetime Exceeding 90Âs in a Bulk Hyperpolarized Solid. Physical Review<br>Letters, 2021, 127, 170603.                                                                             | 7.8  | 25        |
| 8  | High-fidelity Trotter formulas for digital quantum simulation. Physical Review A, 2020, 102, .                                                                                                                    | 2.5  | 6         |
| 9  | Enhanced Optical 13 C Hyperpolarization in Diamond Treated by Highâ€Temperature Rapid Thermal<br>Annealing. Advanced Quantum Technologies, 2020, 3, 2000050.                                                      | 3.9  | 8         |
| 10 | Optically pumped spin polarization as a probe of many-body thermalization. Science Advances, 2020, 6, .                                                                                                           | 10.3 | 18        |
| 11 | Room temperature " <i>optical nanodiamond hyperpolarizer</i> â€+ Physics, design, and operation.<br>Review of Scientific Instruments, 2020, 91, 023106.                                                           | 1.3  | 24        |
| 12 | 10.1063/1.5131655.1., 2020, , .                                                                                                                                                                                   |      | 0         |
| 13 | Carbon-13 dynamic nuclear polarization in diamond via a microwave-free integrated cross effect.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18334-18340.       | 7.1  | 20        |
| 14 | Dynamical Hamiltonian engineering of 2D rectangular lattices in a one-dimensional ion chain. Npj<br>Quantum Information, 2019, 5, .                                                                               | 6.7  | 12        |
| 15 | Dynamics of frequency-swept nuclear spin optical pumping in powdered diamond at low magnetic<br>fields. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>2512-2520. | 7.1  | 28        |
| 16 | Wide dynamic range magnetic field cycler: Harnessing quantum control at low and high fields. Review of Scientific Instruments, 2019, 90, 013112.                                                                  | 1.3  | 11        |
| 17 | Cross-Sensor Feedback Stabilization of an Emulated Quantum Spin Gyroscope. Physical Review Applied, 2019, 11, .                                                                                                   | 3.8  | 22        |
| 18 | Two-Electron-Spin Ratchets as a Platform for Microwave-Free Dynamic Nuclear Polarization of<br>Arbitrary Material Targets. Nano Letters, 2019, 19, 2389-2396.                                                     | 9.1  | 14        |

Азнок Ајоу

| #  | Article                                                                                                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Nanoscale Vector dc Magnetometry via Ancilla-Assisted Frequency Up-Conversion. Physical Review<br>Letters, 2019, 122, 100501.                                                                                                                                                                                                                                                  | 7.8  | 30        |
| 20 | Hyperpolarized relaxometry based nuclear T1 noise spectroscopy in diamond. Nature Communications, 2019, 10, 5160.                                                                                                                                                                                                                                                              | 12.8 | 31        |
| 21 | Selective Decoupling and Hamiltonian Engineering in Dipolar Spin Networks. Physical Review Letters,<br>2019, 122, 013205.                                                                                                                                                                                                                                                      | 7.8  | 8         |
| 22 | Multispin-assisted optical pumping of bulk <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mmultiscripts><mml:mi<br>mathvariant="normal"&gt;C<mml:mprescripts></mml:mprescripts><mml:none<br>/&gt;<mml:mn>13</mml:mn></mml:none<br></mml:mi<br></mml:mmultiscripts> nuclear spin polarization in diamond.<br/>Physical Review B, 2018, 97, .</mml:math<br> | 3.2  | 42        |
| 23 | Enhanced dynamic nuclear polarization via swept microwave frequency combs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10576-10581.                                                                                                                                                                                            | 7.1  | 45        |
| 24 | Orientation-independent room temperature optical <sup>13</sup> C hyperpolarization in powdered diamond. Science Advances, 2018, 4, eaar5492.                                                                                                                                                                                                                                   | 10.3 | 91        |
| 25 | Bright nanowire single photon source based on SiV centers in diamond. Optics Express, 2018, 26, 80.                                                                                                                                                                                                                                                                            | 3.4  | 37        |
| 26 | Quantum interpolation for high-resolution sensing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2149-2153.                                                                                                                                                                                                                      | 7.1  | 25        |
| 27 | Evolution-Free Hamiltonian Parameter Estimation through Zeeman Markers. Physical Review Letters, 2017, 119, 030402.                                                                                                                                                                                                                                                            | 7.8  | 22        |
| 28 | G N Ramachandran's contributions to medical imaging. Resonance, 2016, 21, 741-747.                                                                                                                                                                                                                                                                                             | 0.3  | 0         |
| 29 | Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond. Physical Review X, 2015, 5, .                                                                                                                                                                                                                                                                     | 8.9  | 57        |
| 30 | Perfect quantum transport in arbitrary spin networks. Physical Review B, 2013, 87, .                                                                                                                                                                                                                                                                                           | 3.2  | 16        |
| 31 | Quantum Simulation via Filtered Hamiltonian Engineering: Application to Perfect Quantum Transport<br>in Spin Networks. Physical Review Letters, 2013, 110, 220503.                                                                                                                                                                                                             | 7.8  | 48        |
| 32 | Decay of spin coherences in one-dimensional spin systems. New Journal of Physics, 2013, 15, 093035.                                                                                                                                                                                                                                                                            | 2.9  | 24        |
| 33 | Stable three-axis nuclear-spin gyroscope in diamond. Physical Review A, 2012, 86, .                                                                                                                                                                                                                                                                                            | 2.5  | 107       |
| 34 | Mixed-state quantum transport in correlated spin networks. Physical Review A, 2012, 85, .                                                                                                                                                                                                                                                                                      | 2.5  | 15        |
| 35 | Algorithmic approach to simulate Hamiltonian dynamics and an NMR simulation of quantum state transfer. Physical Review A, 2012, 85, .                                                                                                                                                                                                                                          | 2.5  | 11        |
| 36 | Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath.<br>Physical Review A, 2011, 83, .                                                                                                                                                                                                                                              | 2.5  | 86        |

| #  | Article                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin<br>bath. Physical Review A, 2010, 82, . | 2.5 | 80        |
| 38 | Svetlichny's inequality and genuine tripartite nonlocality in three-qubit pure states. Physical Review<br>A, 2010, 81, .                   | 2.5 | 38        |