
J Wilson White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8732811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recruitment variability and sampling design interact to influence the detectability of protected area effects. Ecological Applications, 2022, 32, .	1.8	4
2	Noâ€ŧake marine protected areas enhance the benefits of kelpâ€forest restoration for fish but not fisheries. Ecology Letters, 2022, 25, 1665-1675.	3.0	2
3	Quantifying the statistical power of monitoring programs for marine protected areas. Ecological Applications, 2021, 31, e2215.	1.8	4
4	Analysis of fish population size distributions confirms cessation of fishing in marine protected areas. Conservation Letters, 2021, 14, e12775.	2.8	10
5	Quantifying the Statistical Power of Monitoring Programs for Marine Protected Areas. Bulletin of the Ecological Society of America, 2021, 102, e01793.	0.2	0
6	Persistence of a reef fish metapopulation via network connectivity: theory and data. Ecology Letters, 2021, 24, 1121-1132.	3.0	6
7	Projecting the timescale of initial increase in fishery yield after implementation of marine protected areas. ICES Journal of Marine Science, 2021, 78, 1860-1871.	1.2	10
8	Not all disturbances are created equal: disturbance magnitude affects predator–prey populations more than disturbance frequency. Oikos, 2020, 129, 1-12.	1.2	8
9	Influence of protogynous sex change on recovery of fish populations within marine protected areas. Ecological Applications, 2020, 30, e02070.	1.8	9
10	Multigenerational and Transgenerational Effects of Environmentally Relevant Concentrations of Endocrine Disruptors in an Estuarine Fish Model. Environmental Science & Technology, 2020, 54, 13849-13860.	4.6	45
11	Diminishing returns in habitat restoration by adding biogenic materials: a test using estuarine oysters and recycled oyster shell. Restoration Ecology, 2020, 28, 1633-1642.	1.4	5
12	Population Dynamics of Sexâ€Changing Fish Species in Marine Protected Areas. Bulletin of the Ecological Society of America, 2020, 101, e01669.	0.2	0
13	Integrating oceans into climate policy: Any green new deal needs a splash of blue. Conservation Letters, 2020, 13, e12716.	2.8	13
14	Environmental forcing and predator consumption outweigh the nonconsumptive effects of multiple predators on oyster reefs. Ecology, 2020, 101, e03041.	1.5	5
15	Setting ecological expectations for adaptive management of marine protected areas. Journal of Applied Ecology, 2019, 56, 2376-2385.	1.9	45
16	Integrating Coastal Oceanic and Benthic Ecological Approaches for Understanding Large-Scale Meta-Ecosystem Dynamics. Oceanography, 2019, 32, 38-49.	0.5	11
17	Setting expected timelines of fished population recovery for the adaptive management of a marine protected area network. Ecological Applications, 2019, 29, e01949.	1.8	57
18	Predation on oysters is inhibited by intense or chronically mild, low salinity events. Limnology and Oceanography, 2019, 64, 81-92.	1.6	21

J WILSON WHITE

#	Article	IF	CITATIONS
19	The dynamics of open populations: integration of top–down, bottom–up and supply–side influences on intertidal oysters. Oikos, 2019, 128, 584-595.	1.2	9
20	Connectivity, Dispersal, and Recruitment: Connecting Benthic Communities and the Coastal Ocean. Oceanography, 2019, 32, 50-59.	0.5	34
21	Community Responses to Climate-Related Variability and Disease: The Critical Importance of Long-Term Research. Oceanography, 2019, 32, 72-81.	0.5	9
22	Marine Protected Areas Exemplify the Evolution of Science and Policy. Oceanography, 2019, 32, 94-103.	0.5	17
23	Connecting Science to Policymakers, Managers, and Citizens. Oceanography, 2019, 32, 106-115.	0.5	9
24	Planning for Change: Assessing the Potential Role of Marine Protected Areas and Fisheries Management Approaches for Resilience Management in a Changing Ocean. Oceanography, 2019, 32, 116-125.	0.5	13
25	Empirical Approaches to Measure Connectivity. Oceanography, 2019, 32, 60-61.	0.5	6
26	Size-dependent predation and intraspecific inhibition of an estuarine snail feeding on oysters. Journal of Experimental Marine Biology and Ecology, 2018, 501, 74-82.	0.7	18
27	The Potential for Cryptic Population Structure to Sustain a Heavily Exploited Marine Flatfish Stock. Marine and Coastal Fisheries, 2018, 10, 411-423.	0.6	8
28	Population models reveal unexpected patterns of local persistence despite widespread larval dispersal in a highly exploited species. Conservation Letters, 2018, 11, e12567.	2.8	11
29	Scaling Up Endocrine Disruption Effects from Individuals to Populations: Outcomes Depend on How Many Males a Population Needs. Environmental Science & Technology, 2017, 51, 1802-1810.	4.6	30
30	Response to O'Leary <i>etÂal</i> .: Misuse of Models Leads to Misguided Conservation Recommendations. Conservation Letters, 2017, 10, 269-270.	2.8	3
31	Application of diet theory reveals context-dependent foraging preferences in an herbivorous coral reef fish. Oecologia, 2017, 184, 127-137.	0.9	10
32	Nonconsumptive effects of a predator weaken then rebound over time. Ecology, 2017, 98, 656-667.	1.5	28
33	Local and regional stressors interact to drive a salinizationâ€induced outbreak of predators on oyster reefs. Ecosphere, 2017, 8, e01992.	1.0	34
34	Transcriptomic changes underlie altered egg protein production and reduced fecundity in an estuarine model fish exposed to bifenthrin. Aquatic Toxicology, 2016, 174, 247-260.	1.9	80
35	Fitting stateâ€space integral projection models to sizeâ€structured time series data to estimate unknown parameters. Ecological Applications, 2016, 26, 2677-2694.	1.8	19
36	Inverse approach to estimating larval dispersal reveals limited population connectivity along 700 km of wave-swept open coast. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160370.	1.2	18

J WILSON WHITE

#	Article	IF	CITATIONS
37	Larval traits carry over to affect postâ€settlement behaviour in a common coral reef fish. Journal of Animal Ecology, 2016, 85, 903-914.	1.3	11
38	Density-dependent prey mortality is determined by the spatial scale of predator foraging. Oecologia, 2016, 180, 305-311.	0.9	6
39	Endocrine Disrupting Compounds Alter Risk-Taking Behavior in Guppies (<i>Poecilia reticulata</i>). Ethology, 2015, 121, 480-491.	0.5	27
40	Marine Population Connectivity: Reconciling Large-Scale Dispersal and High Self-Retention. American Naturalist, 2015, 185, 196-211.	1.0	53
41	Marine reserve design theory for species with ontogenetic migration. Biology Letters, 2015, 11, 20140511.	1.0	18
42	Marine Protected Area Networks in California, USA. Advances in Marine Biology, 2014, 69, 205-251.	0.7	52
43	The Value of Larval Connectivity Information in the Static Optimization of Marine Reserve Design. Conservation Letters, 2014, 7, 533-544.	2.8	52
44	Stochastic models reveal conditions for cyclic dominance in sockeye salmon populations. Ecological Monographs, 2014, 84, 69-90.	2.4	17
45	Beyond connectivity: how empirical methods can quantify population persistence to improve marine protectedâ€area design. Ecological Applications, 2014, 24, 257-270.	1.8	184
46	Experimental determination of the spatial scale of a prey patch from the predator's perspective. Oecologia, 2014, 174, 723-729.	0.9	8
47	Ecologists should not use statistical significance tests to interpret simulation model results. Oikos, 2014, 123, 385-388.	1.2	301
48	Improving fisheries knowledge does not diminish prior efforts: A reply to Castrejón and Charles. Ocean and Coastal Management, 2014, 89, 112.	2.0	0
49	Planktonic larval mortality rates are lower than widely expected. Ecology, 2014, 95, 3344-3353.	1.5	50
50	Transient responses of fished populations to marine reserve establishment. Conservation Letters, 2013, 6, 180-191.	2.8	67
51	Behavior of the Galapagos fishing fleet and its consequences for the design of spatial management alternatives for the red spiny lobster fishery. Ocean and Coastal Management, 2013, 78, 88-100.	2.0	24
52	Improving macroscopic maturity determination in a pre-spawning flatfish through predictive modeling and whole mount methods. Fisheries Research, 2013, 147, 359-369.	0.9	8
53	A comparison of approaches used for economic analysis in marine protected area network planning in California. Ocean and Coastal Management, 2013, 74, 77-89.	2.0	48
54	Competitive and demographic leverage points of community shifts under climate warming. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130572.	1.2	14

J WILSON WHITE

#	Article	IF	CITATIONS
55	From â€~Omics to Otoliths: Responses of an Estuarine Fish to Endocrine Disrupting Compounds across Biological Scales. PLoS ONE, 2013, 8, e74251.	1.1	36
56	A GIS-Based Tool for Representing Larval Dispersal for Marine Reserve Selection. Professional Geographer, 2011, 63, 489-513.	1.0	4
57	The utility and limitations of size and spacing guidelines for designing marine protected area (MPA) networks. Biological Conservation, 2011, 144, 306-318.	1.9	98
58	Linking models with monitoring data for assessing performance of noâ€ŧake marine reserves. Frontiers in Ecology and the Environment, 2011, 9, 390-399.	1.9	69
59	Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts. Ecology Letters, 2011, 14, 1288-1299.	3.0	129
60	Oceanographic coupling across three trophic levels shapes source–sink dynamics in marine metacommunities. Oikos, 2011, 120, 1151-1164.	1.2	24
61	Can inverse density dependence at small spatial scales produce dynamic instability in animal populations?. Theoretical Ecology, 2011, 4, 357-370.	0.4	9
62	Importance of age structure in models of the response of upper trophic levels to fishing and climate change. ICES Journal of Marine Science, 2011, 68, 1270-1283.	1.2	36
63	Decision analysis for designing marine protected areas for multiple species with uncertain fishery status. Ecological Applications, 2010, 20, 1523-1541.	1.8	57
64	Larval entrainment in cooling water intakes: spatially explicit models reveal effects on benthic metapopulations and shortcomings of traditional assessments. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 2014-2031.	0.7	13
65	Adapting the steepness parameter from stock–recruit curves for use in spatially explicit models. Fisheries Research, 2010, 102, 330-334.	0.9	19
66	Synthesizing mechanisms of density dependence in reef fishes: behavior, habitat configuration, and observational scale. Ecology, 2010, 91, 1949-1961.	1.5	66
67	Decision analysis for designing marine protected areas for multiple species with uncertain fishery status. , 2010, 20, 100319061507001.		1
68	MARKOV CHAIN MONTE CARLO METHODS FOR ASSIGNING LARVAE TO NATAL SITES USING NATURAL GEOCHEMICAL TAGS. Ecological Applications, 2008, 18, 1901-1913.	1.8	26
69	SCALEâ€DEPENDENT CHANGES IN THE IMPORTANCE OF LARVAL SUPPLY AND HABITAT TO ABUNDANCE OF A REEF FISH. Ecology, 2008, 89, 1323-1333.	1.5	40
70	Spatially Coupled Larval Supply of Marine Predators and Their Prey Alters the Predictions of Metapopulation Models. American Naturalist, 2008, 171, E179-E194.	1.0	19
71	SAFETY IN NUMBERS AND THE SPATIAL SCALING OF DENSITY-DEPENDENT MORTALITY IN A CORAL REEF FISH. Ecology, 2007, 88, 3044-3054.	1.5	43
72	Spatially correlated recruitment of a marine predator and its prey shapes the largeâ€scale pattern of densityâ€dependent prey mortality. Ecology Letters, 2007, 10, 1054-1065.	3.0	42

#	Article	IF	CITATIONS
73	Behavioral and energetic costs of group membership in a coral reef fish. Oecologia, 2007, 154, 423-433.	0.9	47
74	Behavioral mechanisms underlie an ant-plant mutualism. Oecologia, 2003, 135, 51-59.	0.9	52