List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8732633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Bioactive Properties of Lipophilic Fractions of Edible and Non-Edible Parts of Nasturtium officinale (Watercress) in a Model of Human Malignant Melanoma Cells. Pharmaceuticals, 2022, 15, 141.	1.7	9
2	Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants, 2022, 11, 642.	2.2	5
3	Arsenic Toxicity on Metabolism and Autophagy in Adipose and Muscle Tissues. Antioxidants, 2022, 11, 689.	2.2	7
4	Sulforaphane and iberin are potent epigenetic modulators of histone acetylation and methylation in malignant melanoma. European Journal of Nutrition, 2021, 60, 147-158.	1.8	26
5	PKA and AMPK Signaling Pathways Differentially Regulate Luteal Steroidogenesis. Endocrinology, 2021, 162, .	1.4	18
6	An Evaluation of the Anti-Carcinogenic Response of Major Isothiocyanates in Non-Metastatic and Metastatic Melanoma Cells. Antioxidants, 2021, 10, 284.	2.2	6
7	A novel methylated analogue of L-Mimosine exerts its therapeutic potency through ROS production and ceramide-induced apoptosis in malignant melanoma. Investigational New Drugs, 2021, 39, 971-986.	1.2	5
8	Benzyl and phenethyl isothiocyanates as promising epigenetic drug compounds by modulating histone acetylation and methylation marks in malignant melanoma. Investigational New Drugs, 2021, 39, 1460-1468.	1.2	9
9	DNAJA1 Dysregulates Metabolism Promoting an Antiapoptotic Phenotype in Pancreatic Ductal Adenocarcinoma. Journal of Proteome Research, 2021, 20, 3925-3939.	1.8	6
10	Chemical and Biological Characterization of the Anticancer Potency of Salvia fruticosa in a Model of Human Malignant Melanoma. Plants, 2021, 10, 2472.	1.6	3
11	Allyl isothiocyanate regulates lysine acetylation and methylation marks in an experimental model of malignant melanoma. European Journal of Nutrition, 2020, 59, 557-569.	1.8	24
12	Mechanistic Target of Rapamycin Signaling Activation Antagonizes Autophagy To Facilitate Zika Virus Replication. Journal of Virology, 2020, 94, .	1.5	22
13	Mechanisms of sex hormones in autoimmunity: focus on EAE. Biology of Sex Differences, 2020, 11, 50.	1.8	22
14	Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Frontiers in Neuroscience, 2020, 14, 536682.	1.4	77
15	Survival Mechanisms and Xenobiotic Susceptibility of Keratinocytes Exposed to Metal-Derived Nanoparticles. Chemical Research in Toxicology, 2020, 33, 536-552.	1.7	3
16	Redox homeostasis, oxidative stress and mitophagy. Mitochondrion, 2020, 51, 105-117.	1.6	85
17	Aldehyde dehydrogenase 3A1 confers oxidative stress resistance accompanied by altered DNA damage response in human corneal epithelial cells. Free Radical Biology and Medicine, 2020, 150, 66-74.	1.3	24
18	Metabolomics Analyses from Tissues in Parkinson's Disease. Methods in Molecular Biology, 2019, 1996, 217-257	0.4	14

#	Article	IF	CITATIONS
19	The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants, 2019, 8, 106.	2.2	80
20	Arsenic-induced neurotoxicity: a mechanistic appraisal. Journal of Biological Inorganic Chemistry, 2019, 24, 1305-1316.	1.1	94
21	Lead facilitates foci formation in a Balb/c-3T3 two-step cell transformation model: role of Ape1 function. Environmental Science and Pollution Research, 2018, 25, 12150-12158.	2.7	1
22	Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxidants and Redox Signaling, 2018, 28, 1669-1703.	2.5	142
23	Redox Biology in Neurological Function, Dysfunction, and Aging. Antioxidants and Redox Signaling, 2018, 28, 1583-1586.	2.5	39
24	Novel Docosahexaenoic Acid Ester of Phloridzin Inhibits Proliferation and Triggers Apoptosis in an In Vitro Model of Skin Cancer. Antioxidants, 2018, 7, 188.	2.2	8
25	Differential modulation of human GABAC-ïa receptor by sulfur-containing compounds structurally related to taurine. BMC Neuroscience, 2018, 19, 47.	0.8	5
26	mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. Current Opinion in Toxicology, 2018, 8, 102-110.	2.6	56
27	From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. , 2018, 190, 187-201.		33
28	Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions. Molecular Neurobiology, 2017, 54, 3825-3842.	1.9	40
29	Human aldehyde dehydrogenase 3A1 (ALDH3A1) exhibits chaperone-like function. International Journal of Biochemistry and Cell Biology, 2017, 89, 16-24.	1.2	15
30	Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Research Bulletin, 2017, 133, 12-30.	1.4	115
31	Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology, 2017, 391, 109-115.	2.0	107
32	Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson's Disease. Metabolites, 2017, 7, 22.	1.3	39
33	A Novel Role of Silibinin as a Putative Epigenetic Modulator in Human Prostate Carcinoma. Molecules, 2017, 22, 62.	1.7	40
34	Aldehyde dehydrogenase 3A1 promotes multi-modality resistance and alters gene expression profile in human breast adenocarcinoma MCF-7 cells. International Journal of Biochemistry and Cell Biology, 2016, 77, 120-128.	1.2	24
35	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
36	Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Seminars in Cancer Biology, 2016, 37-38, 96-105.	4.3	51

#	Article	IF	CITATIONS
37	Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways. Molecular Neurobiology, 2016, 53, 5229-5251.	1.9	32
38	Development of a Novel Experimental In Vitro Model of Isothiocyanate-induced Apoptosis in Human Malignant Melanoma Cells. Anticancer Research, 2016, 36, 6303-6310.	0.5	18
39	Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability. Scientific Reports, 2015, 5, 13989.	1.6	52
40	Association of Autophagy in the Cell Death Mediated by Dihydrotestosterone in Autoreactive T Cells Independent of Antigenic Stimulation. Journal of NeuroImmune Pharmacology, 2015, 10, 620-634.	2.1	8
41	Oxidative Stress, Redox Homeostasis and NF-κB Signaling in Neurodegeneration. ACS Symposium Series, 2015, , 53-90.	0.5	1
42	Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiology of Disease, 2015, 81, 76-92.	2.1	57
43	Combining DI-ESI–MS and NMR datasets for metabolic profiling. Metabolomics, 2015, 11, 391-402.	1.4	60
44	Epigenetic therapy as a novel approach in hepatocellular carcinoma. , 2015, 145, 103-119.		59
45	Glutathione depletion regulates both extrinsic and intrinsic apoptotic signaling cascades independent from multidrug resistance protein 1. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 117-134.	2.2	13
46	Oxidative Stress, Redox Signaling, and Autophagy: Cell Death <i>Versus</i> Survival. Antioxidants and Redox Signaling, 2014, 21, 66-85.	2.5	352
47	Antioxidant gene therapy against neuronal cell death. , 2014, 142, 206-230.		120
48	Paraquat-induced ubiquitin/proteasome system dysfunction is compensated by P62-mediated autophagic clearance of oxidized/damaged proteins. Toxicology Letters, 2014, 229, S75.	0.4	0
49	Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress. NeuroToxicology, 2014, 41, 54-63.	1.4	31
50	Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity. ACS Chemical Biology, 2014, 9, 2032-2048.	1.6	82
51	Redox-metabolic "Switches―Regulate Toxicity and Oxidative Stress in Dopaminergic/ Mesencephalic Cells Upon Experimental Models for Parkinson's Disease. Free Radical Biology and Medicine, 2013, 65, S47.	1.3	0
52	Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: Distinct roles of superoxide anion and superoxide dismutases. Free Radical Biology and Medicine, 2013, 61, 370-383.	1.3	65
53	Impairment of Atg5-Dependent Autophagic Flux Promotes Paraquat- and MPP+-Induced Apoptosis But Not Rotenone or 6-Hydroxydopamine Toxicity. Toxicological Sciences, 2013, 136, 166-182.	1.4	61
54	Heterogeneous Nuclear Ribonucleoprotein K Supports Vesicular Stomatitis Virus Replication by Regulating Cell Survival and Cellular Gene Expression. Journal of Virology, 2013, 87, 10059-10069.	1.5	38

#	Article	IF	CITATIONS
55	Oxidative Stress Based-Biomarkers in Oral Carcinogenesis: How Far Have We Gone?. Current Molecular Medicine, 2012, 12, 698-703.	0.6	9
56	Biomarkers of Protein Oxidation in Human Disease. Current Molecular Medicine, 2012, 12, 681-697.	0.6	34
57	Thiol-Redox Signaling, Dopaminergic Cell Death, and Parkinson's Disease. Antioxidants and Redox Signaling, 2012, 17, 1764-1784.	2.5	73
58	Alpha-Synuclein Impairs Autophagic Flux Increasing Oxidative Stress and Dopaminergic Cell Death Induced by Environmental Copper Exposure. Free Radical Biology and Medicine, 2012, 53, S70-S71.	1.3	0
59	Mitochondrial Peroxiredoxin 5 Protects Dopaminergic Cells Against Parkinsonian Neurotoxins Independent from Hydrogen Peroxide Signaling. Free Radical Biology and Medicine, 2012, 53, S65.	1.3	0
60	Distinct Role of Glutaredoxin 1 and 2 Regulating Protein Glutathionylation and Dopaminergic Cell Death. Free Radical Biology and Medicine, 2012, 53, S65.	1.3	0
61	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
62	Pleiotrophic effects of natural products in ROS-induced carcinogenesis: The role of plant-derived natural products in oral cancer chemoprevention. Cancer Letters, 2012, 327, 16-25.	3.2	49
63	Glutaredoxin 1 Protects Dopaminergic Cells by Increased Protein Glutathionylation in Experimental Parkinson's Disease. Antioxidants and Redox Signaling, 2012, 17, 1676-1693.	2.5	37
64	Glutathione Efflux and Cell Death. Antioxidants and Redox Signaling, 2012, 17, 1694-1713.	2.5	186
65	Reactive Oxygen Species (ROS)––Induced genetic and epigenetic alterations in human carcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 711, 167-173.	0.4	437
66	DNA damage induced by endogenous aldehydes: Current state of knowledge. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 711, 13-27.	0.4	236
67	DNA damage and autophagy. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 711, 158-166.	0.4	159
68	Challenges and opportunities for toxicology in Mexico. Toxicology Mechanisms and Methods, 2011, 21, 635-636.	1.3	1
69	Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 834-849.	2.2	27
70	Cell death or survival: The double-edged sword of environmental and occupational toxicity. Chemico-Biological Interactions, 2010, 188, 265-266.	1.7	3
71	Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease. Chemico-Biological Interactions, 2010, 188, 289-300.	1.7	202
72	The role of epigenetics in environmental and occupational carcinogenesis. Chemico-Biological Interactions, 2010, 188, 340-349.	1.7	53

#	Article	IF	CITATIONS
73	The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chemico-Biological Interactions, 2010, 188, 334-339.	1.7	227
74	Glutaredoxins Regulate Neuronal Cell Death Associated with Parkinson's Disease. Free Radical Biology and Medicine, 2010, 49, S157.	1.3	0
75	A Distinct Role for Superoxide Anion and Hydrogen Peroxide in Dopaminergic Cell Death Induced by Mitochondrial Parkinsonian Toxins. Free Radical Biology and Medicine, 2010, 49, S157.	1.3	Ο
76	Apoptosis and glutathione: beyond an antioxidant. Cell Death and Differentiation, 2009, 16, 1303-1314.	5.0	582
77	Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 674, 3-22.	0.9	438
78	Environmental toxicity, oxidative stress, human disease and the "black box―of their synergism: How much have we revealed?. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 674, 1-2.	0.9	28
79	Protein glutathionylation regulates FasLâ€induced apoptosis FASEB Journal, 2009, 23, 526.17.	0.2	Ο
80	Autocrine signaling involved in cell volume regulation: The role of released transmitters and plasma membrane receptors. Journal of Cellular Physiology, 2008, 216, 14-28.	2.0	33
81	Oxidative stress, DNA methylation and carcinogenesis. Cancer Letters, 2008, 266, 6-11.	3.2	530
82	Glutathione Depletion and Disruption of Intracellular Ionic Homeostasis Regulate Lymphoid Cell Apoptosis. Journal of Biological Chemistry, 2008, 283, 36071-36087.	1.6	51
83	Sulfur-Containing Compounds in Protecting Against Oxidant-Mediated Lung Diseases. Current Medicinal Chemistry, 2007, 14, 2590-2596.	1.2	23
84	The central role of glutathione in the pathophysiology of human diseases. Archives of Physiology and Biochemistry, 2007, 113, 234-258.	1.0	432
85	Glutathione Depletion Is Necessary for Apoptosis in Lymphoid Cells Independent of Reactive Oxygen Species Formation. Journal of Biological Chemistry, 2007, 282, 30452-30465.	1.6	235
86	Potential Roles of Electrogenic Ion Transport and Plasma Membrane Depolarization in Apoptosis. Journal of Membrane Biology, 2006, 209, 43-58.	1.0	95
87	SLCO/OATP-like Transport of Glutathione in FasL-induced Apoptosis. Journal of Biological Chemistry, 2006, 281, 29542-29557.	1.6	92
88	Glutathione efflux through an SLCO/OATPâ€like transporter is necessary for the progression of FasLâ€induced apoptosis in Jurkat cells. FASEB Journal, 2006, 20, A121.	0.2	0
89	Volume changes and whole cell membrane currents activated during gradual osmolarity decrease in C6 glioma cells: contribution of two types of K+ channels. American Journal of Physiology - Cell Physiology, 2004, 286, C1399-C1409.	2.1	28
90	Depolarization, exocytosis and amino acid release evoked by hyposmolarity from cortical synaptosomes. European Journal of Neuroscience, 2004, 19, 916-924.	1.2	32

#	Article	IF	CITATIONS
91	Osmolytes and Mechanisms Involved in Regulatory Volume Decrease Under Conditions of Sudden or Gradual Osmolarity Decrease. Neurochemical Research, 2004, 29, 65-72.	1.6	33
92	Epidermal growth factor receptor is activated by hyposmolarity and is an early signal modulating osmolyte efflux pathways in Swiss 3T3 fibroblasts. Pflugers Archiv European Journal of Physiology, 2004, 447, 830-839.	1.3	33
93	Mechanisms of the ATP potentiation of hyposmotic taurine release in Swiss 3T3 fibroblasts. Pflugers Archiv European Journal of Physiology, 2004, 449, 159-169.	1.3	15
94	Astrocyte Cellular Swelling. , 2004, , 173-190.		3
95	Osmosensitive Taurine Release. Advances in Experimental Medicine and Biology, 2003, , 189-196.	0.8	6
96	Osmosensitive taurine release: does taurine share the same efflux pathway with chloride and other amino acid osmolytes?. Advances in Experimental Medicine and Biology, 2003, 526, 189-96.	0.8	3
97	Mechanisms Counteracting Swelling in Brain Cells During Hyponatremia. Archives of Medical Research, 2002, 33, 237-244.	1.5	76
98	Osmosensitive release of neurotransmitter amino acids: relevance and mechanisms. Neurochemical Research, 2002, 27, 59-65.	1.6	46
99	Influence of protein tyrosine kinases on cell volume changeinduced taurine release. Cerebellum, 2002, 1, 103-109.	1.4	17
100	Evidence for two mechanisms of amino acid osmolyte release from hippocampal slices. Pflugers Archiv European Journal of Physiology, 2001, 442, 791-800.	1.3	50
101	Efflux of osmolyte amino acids during isovolumic regulation in hippocampal slices. Journal of Neuroscience Research, 2000, 61, 701-711.	1.3	45
102	Amino Acid Osmolytes in Regulatory Volume Decrease and Isovolumetric Regulation in Brain Cells: Contribution and Mechanisms. Cellular Physiology and Biochemistry, 2000, 10, 361-370.	1.1	95