Carmen Guaza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8732201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cannabinoids Promote Oligodendrocyte Progenitor Survival: Involvement of Cannabinoid Receptors and Phosphatidylinositol-3 Kinase/Akt Signaling. Journal of Neuroscience, 2002, 22, 9742-9753.	3.6	390
2	Experienceâ€dependent Facilitating Effect of Corticosterone on Spatial Memory Formation in the Water Maze. European Journal of Neuroscience, 1997, 9, 637-642.	2.6	377
3	Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. Journal of Neurochemistry, 2002, 83, 1529-1533.	3.9	323
4	Therapeutic Action of Cannabinoids in a Murine Model of Multiple Sclerosis. Journal of Neuroscience, 2003, 23, 2511-2516.	3.6	294
5	Prenatal Immune Challenge Disrupts Sensorimotor Gating in Adult Rats Implications for the Etiopathogenesis of Schizophrenia. Neuropsychopharmacology, 2002, 26, 204-215.	5.4	279
6	Interleukin-1 Regulates Proliferation and Differentiation of Oligodendrocyte Progenitor Cells. Molecular and Cellular Neurosciences, 2002, 20, 489-502.	2.2	189
7	Endogenous Interleukin-1 Receptor Antagonist Mediates Anti-Inflammatory and Neuroprotective Actions of Cannabinoids in Neurons and Glia. Journal of Neuroscience, 2003, 23, 6470-6474.	3.6	185
8	Novelty-related Rapid Locomotor Effects of Corticosterone in Rats. European Journal of Neuroscience, 1996, 8, 794-800.	2.6	183
9	Induction of COX-2 and PGE2 biosynthesis by IL-1Î ² is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. British Journal of Pharmacology, 2000, 131, 152-159.	5.4	180
10	LPS/IFNâ€Î³ cytotoxicity in oligodendroglial cells: role of nitric oxide and protection by the antiâ€inflammatory cytokine ILâ€10. European Journal of Neuroscience, 2001, 13, 493-502.	2.6	150
11	Anandamide enhances ILâ€10 production in activated microglia by targeting CB ₂ receptors: Roles of ERK1/2, JNK, and NFâ€₽B. Glia, 2010, 58, 135-147.	4.9	149
12	Role of CB ₁ and CB ₂ receptors in the inhibitory effects of cannabinoids on lipopolysaccharideâ€induced nitric oxide release in astrocyte cultures. Journal of Neuroscience Research, 2002, 67, 829-836.	2.9	133
13	Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. Journal of Neurochemistry, 2005, 92, 1327-1339.	3.9	131
14	Neurobehavioral and Immunological Consequences of Prenatal Immune Activation in Rats. Influence of Antipsychotics. Neuropsychopharmacology, 2007, 32, 1791-1804.	5.4	130
15	Chronic treatment with CP 55,940 during the peri-adolescent period differentially affects the behavioural responses of male and female rats in adulthood. Psychopharmacology, 2003, 170, 301-308.	3.1	128
16	Activation of the endocannabinoid system as a therapeutic approach in a murine model of multiple sclerosis. FASEB Journal, 2005, 19, 1338-1340.	0.5	120
17	A Cannabigerol Quinone Alleviates Neuroinflammation in a Chronic Model of Multiple Sclerosis. Journal of NeuroImmune Pharmacology, 2012, 7, 1002-1016.	4.1	119
18	Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis. PLoS ONE, 2018, 13, e0202590.	2.5	119

#	Article	IF	CITATIONS
19	Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. British Journal of Pharmacology, 2005, 145, 441-448.	5.4	114
20	CD200 D200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia, 2012, 60, 1437-1450.	4.9	113
21	The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiology of Disease, 2009, 33, 57-71.	4.4	107
22	Anandamide suppresses nitric oxide and TNF-α responses to Theiler's virus or endotoxin in astrocytes. NeuroReport, 1997, 8, 1929-1933.	1.2	105
23	Excitotoxicity in a chronic model of multiple sclerosis: Neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. Molecular and Cellular Neurosciences, 2007, 34, 551-561.	2.2	103
24	Study of the regulation of the endocannabinoid system in a virus model of multiple sclerosis reveals a therapeutic effect of palmitoylethanolamide. European Journal of Neuroscience, 2008, 28, 633-641.	2.6	103
25	The endogenous cannabinoid anandamide potentiates interleukinâ€6 production by astrocytes infected with Theiler's murine encephalomyelitis virus by a receptorâ€mediated pathway. FEBS Letters, 1998, 433, 139-142.	2.8	100
26	Prospects for cannabinoid therapies in basal ganglia disorders. British Journal of Pharmacology, 2011, 163, 1365-1378.	5.4	98
27	A Reversible and Selective Inhibitor of Monoacylglycerol Lipase Ameliorates Multiple Sclerosis. Angewandte Chemie - International Edition, 2014, 53, 13765-13770.	13.8	91
28	Effect of anandamide uptake inhibition in the production of nitric oxide and in the release of cytokines in astrocyte cultures. Glia, 2005, 52, 163-168.	4.9	89
29	A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochemical Pharmacology, 2009, 77, 86-100.	4.4	85
30	Genderâ€dependent cellular and biochemical effects of maternal deprivation on the hippocampus of neonatal rats: A possible role for the endocannabinoid system. Developmental Neurobiology, 2008, 68, 1334-1347.	3.0	80
31	Early maternal deprivation and neonatal single administration with a cannabinoid agonist induce long-term sex-dependent psychoimmunoendocrine effects in adolescent rats. Psychoneuroendocrinology, 2007, 32, 636-650.	2.7	79
32	Viral models of multiple sclerosis: Neurodegeneration and demyelination in mice infected with Theiler's virus. Progress in Neurobiology, 2013, 101-102, 46-64.	5.7	78
33	Antinociceptive, behavioural and neuroendocrine effects of CP 55,940 in young rats. Developmental Brain Research, 2002, 136, 85-92.	1.7	74
34	Tissue plasminogen activator prevents white matter damage following stroke. Journal of Experimental Medicine, 2011, 208, 1229-1242.	8.5	72
35	Brain Innate Immunity in the Regulation of Neuroinflammation: Therapeutic Strategies by Modulating CD200-CD200R Interaction Involve the Cannabinoid System. Current Pharmaceutical Design, 2014, 20, 4707-4722.	1.9	69
36	Increased cerebrospinal fluid cAMP levels in Alzheimer's disease. Brain Research, 1999, 846, 265-267.	2.2	66

#	Article	IF	CITATIONS
37	The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: Evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. Brain, Behavior, and Immunity, 2011, 25, 736-749.	4.1	63
38	Adrenocortical response to acute and chronic ethanol administration in rats. Psychopharmacology, 1983, 79, 173-176.	3.1	61
39	A <scp>S</scp> ativex [®] â€like combination of phytocannabinoids as a diseaseâ€modifying therapy in a viral model of multiple sclerosis. British Journal of Pharmacology, 2015, 172, 3579-3595.	5.4	58
40	Evidence for cyclooxygenase activation by nitric oxide in astrocytes. Glia, 1995, 15, 167-172.	4.9	56
41	A Cannabigerol Derivative Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2014, 9, e94733.	2.5	56
42	Nitric Oxide Synthesis Inhibitors Prevent Rapid Behavioral Effects of Corticosterone in Rats. Neuroendocrinology, 1996, 63, 446-453.	2.5	52
43	Re-evaluation of nestin as a marker of oligodendrocyte lineage cells. Microscopy Research and Technique, 2001, 52, 753-765.	2.2	51
44	The synthetic cannabinoid WIN 55,212-2 increases COX-2 expression and PGE2 release in murine brain-derived endothelial cells following Theiler's virus infection. Biochemical Pharmacology, 2006, 72, 869-880.	4.4	51
45	Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1receptors. Journal of Neuroinflammation, 2011, 8, 102.	7.2	51
46	2-Arachidonoylglycerol Reduces Proteoglycans and Enhances Remyelination in a Progressive Model of Demyelination. Journal of Neuroscience, 2017, 37, 8385-8398.	3.6	47
47	CD200R1 agonist attenuates glial activation, inflammatory reactions, and hypersensitivity immediately after its intrathecal application in a rat neuropathic pain model. Journal of Neuroinflammation, 2016, 13, 43.	7.2	45
48	Interleukin-1-Beta Induces Pituitary Adrenocorticotropin Secretion: Evidence for Glucocorticoid Modulation. Neuroendocrinology, 1992, 55, 648-654.	2.5	44
49	Hypoxia mimetic activity of VCE-004.8, a cannabidiol quinone derivative: implications for multiple sclerosis therapy. Journal of Neuroinflammation, 2018, 15, 64.	7.2	44
50	Endotoxin administration induced differential neurochemical activation of the rat brain stem nuclei. Brain Research Bulletin, 1996, 40, 151-156.	3.0	40
51	Differential regulation of type I and type II interleukin-1 receptors in focal brain inflammation. European Journal of Neuroscience, 2005, 21, 1205-1214.	2.6	40
52	Anandamide inhibits IL-12p40 production by acting on the promoter repressor element GA-12: possible involvement of the COX-2 metabolite prostamide E2. Biochemical Journal, 2008, 409, 761-770.	3.7	40
53	2â€AG limits Theiler's virus induced acute neuroinflammation by modulating microglia and promoting MDSCs. Glia, 2018, 66, 1447-1463.	4.9	40
54	Naloxone decreases ethanol consumption within a free choice paradigm in rats. Pharmacology Biochemistry and Behavior, 1988, 29, 39-43.	2.9	39

#	Article	IF	CITATIONS
55	Therapeutic potential of CB2 targeting in multiple sclerosis. Expert Opinion on Therapeutic Targets, 2008, 12, 185-195.	3.4	37
56	A CB1/CB2 receptor agonist, WIN 55,212-2, exerts its therapeutic effect in a viral autoimmune model of multiple sclerosis by restoring self-tolerance to myelin. Neuropharmacology, 2012, 63, 385-393.	4.1	37
57	Chemical Probes for the Recognition of Cannabinoid Receptors in Native Systems. Angewandte Chemie - International Edition, 2012, 51, 6896-6899.	13.8	37
58	Altered immune function in unaffected first-degree biological relatives of schizophrenia patients. Psychiatry Research, 2012, 200, 1022-1025.	3.3	36
59	A Basal Tone of 2-Arachidonoylglycerol Contributes to Early Oligodendrocyte Progenitor Proliferation by Activating Phosphatidylinositol 3-Kinase (PI3K)/AKT and the Mammalian Target of Rapamycin (MTOR) Pathways. Journal of Neurolmmune Pharmacology, 2015, 10, 309-317.	4.1	36
60	Manipulation of Gut Microbiota Influences Immune Responses, Axon Preservation, and Motor Disability in a Model of Progressive Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 1374.	4.8	35
61	Involvement of kappa type opioids on ethanol drinking. Life Sciences, 1988, 42, 1067-1075.	4.3	34
62	Theiler's virus infection induces the expression of cyclooxygenase-2 in murine astrocytes: inhibition by the anti-inflammatory cytokines interleukin-4 and interleukin-10. Neuroscience Letters, 2002, 324, 237-241.	2.1	34
63	Chromenopyrazole, a Versatile Cannabinoid Scaffold with in Vivo Activity in a Model of Multiple Sclerosis. Journal of Medicinal Chemistry, 2016, 59, 6753-6771.	6.4	34
64	Effects of acute and prolonged administration of chlordiazepoxide upon the pituitary-adrenal activity and brain catecholamines in sound stressed and unstressed rats. Neuroscience, 1980, 5, 2289-2295.	2.3	33
65	Interleukin-4 and interleukin-10 modulate nuclear factor κB activity and nitric oxide synthase-2 expression in Theiler's virus-infected brain astrocytes. Journal of Neurochemistry, 2002, 81, 1242-1252.	3.9	33
66	The Role of Cannabinoid System on Immune Modulation: Therapeutic Implications on CNS Inflammation. Mini-Reviews in Medicinal Chemistry, 2005, 5, 671-675.	2.4	33
67	Aggravated experimental autoimmune encephalomyelitis in IL-15 knockout mice. Experimental Neurology, 2010, 222, 235-242.	4.1	33
68	Gut microbiota, cannabinoid system and neuroimmune interactions: New perspectives in multiple sclerosis. Biochemical Pharmacology, 2018, 157, 51-66.	4.4	31
69	A Commercial Probiotic Induces Tolerogenic and Reduces Pathogenic Responses in Experimental Autoimmune Encephalomyelitis. Cells, 2020, 9, 906.	4.1	31
70	Corticosteroid Regulation of IL-1 Receptors in the Mouse Hippocampus: Effects of Glucocorticoid Treatment, Stress, and Adrenalectomy. Neuroendocrinology, 1994, 59, 120-128.	2.5	30
71	The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ-tetrahydrocannabinol acting through CB1 receptors. Multiple Sclerosis and Related Disorders, 2015, 4, 505-511.	2.0	30
72	Role of arachidonic acid metabolism on corticotropin-releasing factor (CRF)-release induced by interleukin-1 from superfused rat hypothalami. Journal of Neuroimmunology, 1992, 39, 57-66.	2.3	29

#	Article	IF	CITATIONS
73	The endocannabinoid 2-AG enhances spontaneous remyelination by targeting microglia. Brain, Behavior, and Immunity, 2019, 77, 110-126.	4.1	28
74	The κ-opioid receptor is involved in the stimulating effect of nicotine on adrenocortical activity but not in nicotine induced anxiety. Behavioural Brain Research, 2005, 163, 212-218.	2.2	27
75	Mutually Antagonistic Effects of Corticosterone and Prolactin on Rat Lymphocyte Proliferation. Neuroendocrinology, 1992, 56, 574-581.	2.5	26
76	Behavioral, endocrine and immunological characteristics of a murine model of premature aging. Developmental and Comparative Immunology, 2005, 29, 965-976.	2.3	25
77	Cytokine Regulation of Corticosteroid Receptors in the Rat Hippocampus: Effects of Interleukin-1, Interleukin-6, Tumor Necrosis Factor and Lipopolysaccharide. Neuroendocrinology, 1995, 62, 47-54.	2.5	24
78	How oral probiotics affect the severity of an experimental model of progressive multiple sclerosis? Bringing commensal bacteria into the neurodegenerative process. Gut Microbes, 2020, 12, 1813532.	9.8	24
79	Dexamethasone regulation of interleukin-1-receptors in the hippocampus of Theiler's virus-infected mice: effects on virus-mediated demyelination. European Journal of Pharmacology, 1999, 372, 75-83.	3.5	23
80	Effects of 14-methoxymetopon, a potent opioid agonist, on the responses to the tail electric stimulation test and plus-maze activity in male rats: neuroendocrine correlates. Brain Research Bulletin, 2002, 57, 661-666.	3.0	23
81	Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment. Frontiers in Cellular Neuroscience, 2017, 11, 5.	3.7	23
82	Perspectives on Cannabis-Based Therapy of Multiple Sclerosis: A Mini-Review. Frontiers in Cellular Neuroscience, 2020, 14, 34.	3.7	23
83	Cannabidiolâ€induced apoptosis in murine microglial cells through lipid raft. Glia, 2012, 60, 1182-1190.	4.9	22
84	Behavioral, neuroendocrine, and immunological outcomes of escapable or inescapable shocks. Physiology and Behavior, 1992, 51, 651-656.	2.1	21
85	Novel Insights into the Multiple Sclerosis Risk Gene <i>ANKRD55</i> . Journal of Immunology, 2016, 196, 4553-4565.	0.8	21
86	Development of a Fluorescent Bodipy Probe for Visualization of the Serotonin 5-HT _{1A} Receptor in Native Cells of the Immune System. Bioconjugate Chemistry, 2018, 29, 2021-2027.	3.6	21
87	Cannabinoid System and Neuroinflammation: Implications for Multiple Sclerosis. NeuroImmunoModulation, 2007, 14, 182-187.	1.8	20
88	Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. Journal of Neuroinflammation, 2020, 17, 88.	7.2	20
89	The effects of acute and chronic administration of morphine on the turnover of brain and adrenal catecholamines in rats. Psychopharmacology, 1980, 68, 43-49.	3.1	19
90	Chapter 9 The Endocannabinoid Anandamide. Vitamins and Hormones, 2009, 81, 207-230.	1.7	19

#	Article	IF	CITATIONS
91	Effects of HPA hormones on adapted lymphocyte responsiveness to repeated stress. Brain Research Bulletin, 1992, 28, 581-585.	3.0	18
92	Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiology of Disease, 2020, 143, 104994.	4.4	18
93	Selected Clostridia Strains from The Human Microbiota and their Metabolite, Butyrate, Improve Experimental Autoimmune Encephalomyelitis. Neurotherapeutics, 2021, 18, 920-937.	4.4	18
94	Functional responses to the cannabinoid agonist WIN 55,212-2 in neonatal rats of both genders: influence of weaning. Pharmacology Biochemistry and Behavior, 2004, 78, 593-602.	2.9	16
95	Understanding Microglia–Neuron Cross Talk: Relevance of the Microglia–Neuron Cocultures. Methods in Molecular Biology, 2013, 1041, 215-229.	0.9	14
96	Is the Adrenal Cortex a Putative Site for the Action of Interleukin-1?. Hormone and Metabolic Research, 1992, 24, 48-49.	1.5	13
97	Identification of receptors and enzymes for endocannabinoids in NSC-34 cells: Relevance for in vitro studies with cannabinoids in motor neuron diseases. Neuroscience Letters, 2012, 508, 67-72.	2.1	13
98	2â€arachidonoylglycerol reduces chondroitin sulphate proteoglycan production by astrocytes and enhances oligodendrocyte differentiation under inhibitory conditions. Glia, 2020, 68, 1255-1273.	4.9	13
99	Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 685139.	4.8	13
100	D-Ala2-Met5-enkephalinamide impairs the acquisition of ethanol preference without influencing sucrose preference. Physiology and Behavior, 1990, 48, 435-439.	2.1	12
101	Regional and temporal modulation of brain glycoprotein synthesis by corticosterone. NeuroReport, 1996, 7, 2819-2822.	1.2	12
102	Effect of naloxone administration upon responses of adrenal hormones to withdrawal from ethanol. Psychopharmacology, 1984, 82, 181-184.	3.1	11
103	Naltrindole administration during the preweanling period and manipulation affect adrenocortical reactivity in young rats. Developmental Brain Research, 1999, 112, 135-137.	1.7	11
104	Prolonged ethanol consumption influences shuttle box and passive avoidance performance in rats. Physiology and Behavior, 1985, 34, 163-165.	2.1	10
105	Effects of adrenaline on the acquisition and maintenance of ethanol preference in a taste conditioning paradigm. Psychopharmacology, 1986, 90, 336-40.	3.1	10
106	Î ² -Endorphin administration interferes with the acquisition and initial maintenance of ethanol preference in the rat. Physiology and Behavior, 1989, 45, 87-92.	2.1	10
107	Enkephalins interfere with early phases of voluntary ethanol drinking. Peptides, 1990, 11, 697-702.	2.4	10
108	Activity of the hypothalamic-pituitary-adrenal axis in mice selected for left- or right-handedness. Brain Research, 1992, 589, 302-306.	2.2	10

#	Article	IF	CITATIONS
109	Adrenomedullary responses to acute and chronic ethanol administration to rats. Biochemical Pharmacology, 1983, 32, 3091-3095.	4.4	9
110	Modifications in adrenal hormones response to ethanol by prior ethanol dependence. Pharmacology Biochemistry and Behavior, 1985, 22, 357-360.	2.9	8
111	Administration of leu-enkephalin impairs the acquisition of preference for ethanol. Psychopharmacology, 1990, 100, 350-354.	3.1	7
112	Effects of the kappa opioid receptor antagonist MR-2266-BS on the acquisition of ethanol preference. Life Sciences, 1990, 46, 1119-1129.	4.3	7
113	The Role of Inflammatory Mediators in Immune-to-Brain Communication during Health and Disease. Mediators of Inflammation, 2013, 2013, 1-3.	3.0	7
114	Adrenalectomy does not change CRF secretion induced by interleukin-1 from rat perifused hypothalami. Regulatory Peptides, 1992, 41, 237-247.	1.9	6
115	Evidence for Nitric Oxide-Mediated Rapid Locomotor Effects of Corticosterone in a Novel Environment. Annals of the New York Academy of Sciences, 2006, 746, 398-399.	3.8	5
116	Nitric oxide released by accessory cells mediates the gastrin-releasing peptide effect on murine lymphocyte chemotaxis. Regulatory Peptides, 2005, 131, 46-53.	1.9	4
117	Aging and neuroinflammation: Changes in immune cell responses, axon integrity, and motor function in a viral model of progressive multiple sclerosis. Aging Cell, 2021, 20, e13440.	6.7	4
118	Modulation of IL-1 receptor in mice hippocampus during Theiler's virus encephalomyelitis, an experimental model for multiple sclerosis (MS). Journal of Neuroimmunology, 1994, 54, 177.	2.3	0