Dave G Sibeck

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8732089/dave-g-sibeck-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

263 8,832 44 84 g-index

272 9,748 3.6 ext. papers ext. citations avg, IF 5.96

L-index

#	Paper	IF	Citations
263	Solitary Magnetic Structures Developed From Gyro-Resonance With Solar Wind Ions at Mars and Earth. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	Ο
262	Neutral Densities in the Outer Exosphere Near the Subsolar Magnetopause. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL093383	4.9	О
261	Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models. <i>Journal of Geophysical Research:</i> Space Physics, 2021 , 126, e2020JA028403	2.6	2
260	Soft X-ray and ENA Imaging of the Earth's Dayside Magnetosphere. <i>Journal of Geophysical Research:</i> Space Physics, 2021 , 126, e2020JA028816	2.6	5
259	MagnetosphereIbnosphere Coupling of Precipitating Electrons and Ionospheric Conductance. <i>Geophysical Monograph Series</i> , 2021 , 229-242	1.1	3
258	Large-Scale Structure and Dynamics of the Magnetosphere. <i>Geophysical Monograph Series</i> , 2021 , 15-36	1.1	0
257	Radiation Belt Response to Fast Reverse Shock at Geosynchronous Orbit. <i>Astrophysical Journal</i> , 2021 , 910, 154	4.7	O
256	The Cusp Plasma Imaging Detector (CuPID) CubeSat Observatory: Mission Overview. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA029015	2.6	1
255	Ion Acceleration by Foreshock Bubbles. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020) _}A @28	89 <u>2</u> 24
254	Foreshock Cavities: Direct Transmission Through the Bow Shock. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029201	2.6	3
253	Microscale Processes Determining Macroscale Evolution of Magnetic Flux Tubes along Earth Magnetopause. <i>Astrophysical Journal</i> , 2021 , 914, 26	4.7	1
252	Comparison of MMS Observations of Foreshock Bubbles With a Global Hybrid Simulation. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028848	2.6	1
251	Dynamic Mechanisms Associated With High-Energy Electron Flux Dropout in the Earth's Outer Radiation Belt Under the Influence of a Coronal Mass Ejection Sheath Region. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126,	2.6	2
250	Evolution of Pitch Angle Distributions of Relativistic Electrons During Geomagnetic Storms: Van Allen Probes Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028335	2.6	O
249	High-Energy Electron Flux Enhancement Pattern in the Outer Radiation Belt in Response to the AlfvBic Fluctuations Within High-Speed Solar Wind Stream: A Statistical Analysis. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029363	2.6	4
248	Is the Relation Between the Solar Wind Dynamic Pressure and the Magnetopause Standoff Distance so Straightforward?. <i>Geophysical Research Letters</i> , 2020 , 47, e2019GL086474	4.9	8
247	A Framework for Understanding and Quantifying the Loss and Acceleration of Relativistic Electrons in the Outer Radiation Belt During Geomagnetic Storms. <i>Space Weather</i> , 2020 , 18, e2020SW002477	3.7	5

246	Transient Phenomena at the Magnetopause and Bow Shock and Their Ground Signatures. <i>Geophysical Monograph Series</i> , 2020 , 11-37	1.1	6
245	Characteristics of Minor Ions and Electrons in Flux Transfer Events Observed by the Magnetospheric Multiscale Mission. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA	\0 27 77	′8 ⁶
244	Multi-Point Observations of the Geospace Plume. <i>Geophysical Monograph Series</i> , 2020 , 243-264	1.1	2
243	An Examination of the Magnetopause Position and Shape Based Upon New Observations. <i>Geophysical Monograph Series</i> , 2020 , 135-151	1.1	5
242	Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027660	2.6	1
241	Characteristics of Escaping Magnetospheric Ions Associated With Magnetic Field Fluctuations. Journal of Geophysical Research: Space Physics, 2020 , 125, e2019JA027337	2.6	O
240	Foreshock Bubbles at Venus: Hybrid Simulations and VEX Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027056	2.6	8
239	Magnetic Reconnection Inside a Flux Rope Induced by Kelvin-Helmholtz Vortices. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027665	2.6	9
238	Multipoint observations of compressional Pc5 pulsations in the dayside magnetosphere and corresponding particle signatures. <i>Annales Geophysicae</i> , 2020 , 38, 1267-1281	2	1
237	Sequential Observations of Flux Transfer Events, Poleward-Moving Auroral Forms, and Polar Cap Patches. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027674	2.6	3
236	Association Between EMIC Wave Occurrence and Enhanced Convection Periods During Ion Injections. <i>Geophysical Research Letters</i> , 2020 , 47, e2019GL085676	4.9	7
235	Flux Transfer Event With an Electron-Scale Substructure Observed by the Magnetospheric Multiscale Mission. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027308	2.6	O
234	Foreshock Cavities at Venus and Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020)J <u>A</u> @28	30243
233	Electromagnetic Ion Cyclotron Waves Pattern Recognition Based on a Deep Learning Technique: Bag-of-Features Algorithm Applied to Spectrograms. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 249, 13	8	
232	A K-Means Clustering Analysis of the Jovian and Terrestrial Magnetopauses: A Technique to Classify Global Magnetospheric Behavior. <i>Journal of Geophysical Research E: Planets</i> , 2020 , 125, e2019.	1 E 0063	86 6
231	Inner Magnetospheric ULF Waves: The Occurrence and Distribution of Broadband and Discrete Wave Activity. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA027887	2.6	2
230	Dayside Auroral Observation Resulting From a Rapid Localized Compression of the Earth's Magnetic Field. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL088995	4.9	О
229	Formation and Topology of Foreshock Bubbles. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA028058	2.6	14

228	Current Status of Inner Magnetosphere and Radiation Belt Modeling. <i>Geophysical Monograph Series</i> , 2020 , 231-242	1.1	1
227	Structure and Dynamics of the Magnetosheath. <i>Geophysical Monograph Series</i> , 2020 , 117-133	1.1	1
226	The Formation of Electron Heat Flux Over the Sunlit Quiet Polar Cap Ionosphere. <i>Geophysical Research Letters</i> , 2019 , 46, 10201-10208	4.9	5
225	Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without Positive IMF Bx Component During Southward IMF. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 4037-4048	2.6	20
224	Contribution of ULF Wave Activity to the Global Recovery of the Outer Radiation Belt During the Passage of a High-Speed Solar Wind Stream Observed in September 2014. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 1660-1678	2.6	9
223	Low Energy Precipitating Electrons in the Diffuse Aurorae. <i>Geophysical Research Letters</i> , 2019 , 46, 3582	-345989	9
222	On the Contribution of EMIC Waves to the Reconfiguration of the Relativistic Electron Butterfly Pitch Angle Distribution Shape on 2014 September 12A Case Study. <i>Astrophysical Journal</i> , 2019 , 872, 36	4.7	3
221	Electron Vorticity Indicative of the Electron Diffusion Region of Magnetic Reconnection. <i>Geophysical Research Letters</i> , 2019 , 46, 6287-6296	4.9	13
220	Formation of the Potential Jump Over the Geomagnetically Quiet Sunlit Polar Cap Region. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 4384-4401	2.6	2
219	Magnetospheric Multiscale Mission Observations of Reconnecting Electric Fields in the Magnetotail on Kinetic Scales. <i>Geophysical Research Letters</i> , 2019 , 46, 10295-10302	4.9	2
218	The Magnetosphere-Ionosphere Electron Precipitation Dynamics and Their Geospace Consequences During the 17 March 2013 Storm. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 6504-6523	2.6	11
217	High-Frequency Wave Generation in Magnetotail Reconnection: Nonlinear Harmonics of Upper Hybrid Waves. <i>Geophysical Research Letters</i> , 2019 , 46, 7873-7882	4.9	11
216	The Evolution of a Pitch-Angle B ite-Out[Scattering Signature Caused by EMIC Wave Activity: A Case Study. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 5042-5055	2.6	8
215	Mechanism of Reconnection on Kinetic Scales Based on Magnetospheric Multiscale Mission Observations. <i>Astrophysical Journal Letters</i> , 2019 , 885, L26	7.9	7
214	Magnetotail boundary crossings at lunar distances: ARTEMIS observations. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2019 , 182, 45-60	2	2
213	Space Weather Operation at KASI With Van Allen Probes Beacon Signals. <i>Space Weather</i> , 2018 , 16, 108-	13.9	
212	The Global Statistical Response of the Outer Radiation Belt During Geomagnetic Storms. <i>Geophysical Research Letters</i> , 2018 , 45, 3783-3792	4.9	36
211	Generation Mechanism for Interlinked Flux Tubes on the Magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 1337-1355	2.6	3

(2018-2018)

210	Dawn-Dusk Auroral Oval Oscillations Associated With High-Speed Solar Wind. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 600-610	2.6	1	
209	The Role of Localized Compressional Ultra-low Frequency Waves in Energetic Electron Precipitation. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 1900	2.6	21	
208	Impact of Precipitating Electrons and Magnetosphere-Ionosphere Coupling Processes on Ionospheric Conductance. <i>Space Weather</i> , 2018 , 16, 829-837	3.7	19	
207	Jets Downstream of Collisionless Shocks. <i>Space Science Reviews</i> , 2018 , 214, 1	7.5	66	
206	Determining the Mode, Frequency, and Azimuthal Wave Number of ULF Waves During a HSS and Moderate Geomagnetic Storm. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 6457-6477	2.6	14	
205	Ion Injection Triggered EMIC Waves in the Earth's Magnetosphere. <i>Journal of Geophysical Research: Space Physics,</i> 2018 , 123, 4921-4938	2.6	23	
204	Magnetospheric Multiscale Observations of Turbulence in the Magnetosheath on Kinetic Scales. <i>Astrophysical Journal Letters</i> , 2018 , 864, L29	7.9	16	
203	Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 7241-7256	2.6	17	
202	A Study of Intense Local dB/dt Variations During Two Geomagnetic Storms. <i>Space Weather</i> , 2018 , 16, 676-693	3.7	29	
201	Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation 2018 ,		1	
200	Ultralow Frequency Waves as an Intermediary for Solar Wind Energy Input Into the Radiation Belts. Journal of Geophysical Research: Space Physics, 2018 , 123, 10,090	2.6	11	
199	Multisatellite observations of the magnetosphere response to changes in the solar wind and interplanetary magnetic field. <i>Annales Geophysicae</i> , 2018 , 36, 1319-1333	2	5	
198	Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals. <i>Space Science Reviews</i> , 2018 , 214, 1	7.5	28	
197	Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation. <i>Annales Geophysicae</i> , 2018 , 36, 1171-1182	2	19	
196	Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation. <i>Annales Geophysicae</i> , 2018 , 36, 1081-1097	2	9	
195	Small-Scale Flux Transfer Events Formed in the Reconnection Exhaust Region Between Two X Lines. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 8473-8488	2.6	17	
194	Characteristics, Occurrence, and Decay Rates of Remnant Belts Associated With Three-Belt Events in the Earth's Radiation Belts. <i>Geophysical Research Letters</i> , 2018 , 45, 12,099-12,107	4.9	7	
193	Magnetosheath Propagation Time of Solar Wind Directional Discontinuities. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 3727-3741	2.6	6	

192	Is diffuse aurora driven from above or below?. <i>Geophysical Research Letters</i> , 2017 , 44, 641-647	4.9	13
191	A method to predict magnetopause expansion in radial IMF events by MHD simulations. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 3110-3126	2.6	11
190	Magnetospheric Multiscale mission observations of the outer electron diffusion region. <i>Geophysical Research Letters</i> , 2017 , 44, 2049-2059	4.9	30
189	Comparative study of three reconnection X line models at the Earth's dayside magnetopause using in situ observations. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 4228-4250	2.6	6
188	Conjugate observations of electromagnetic ion cyclotron waves associated with traveling convection vortex events. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 7336-7352	2.6	7
187	Major pathways to electron distribution function formation in regions of diffuse aurora. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 4251-4265	2.6	14
186	Ultra-relativistic radiation belt extinction and ULF wave radial diffusion: Modeling the September 2014 extended dropout event. <i>Geophysical Research Letters</i> , 2017 , 44, 2624-2633	4.9	29
185	MMS observation of inverse energy dispersion in shock drift accelerated ions. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 3232-3246	2.6	1
184	Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 449-463	2.6	4
183	Structure and Properties of the Foreshock at Venus. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 10,275-10,286	2.6	13
182	On the Effect of Geomagnetic Storms on Relativistic Electrons in the Outer Radiation Belt: Van Allen Probes Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 11,100-11,108	2.6	31
181	THEMIS satellite observations of hot flow anomalies at Earth's bow shock. <i>Annales Geophysicae</i> , 2017 , 35, 443-451	2	18
180	Intermittent Anisotropic Turbulence Detected by THEMIS in the Magnetosheath. <i>Astrophysical Journal Letters</i> , 2017 , 851, L42	7.9	8
179	Acceleration of radiation belt electrons and the role of the average interplanetary magnetic field Bz component in high-speed streams. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 10,084	1-1 ² 0, ⁶ 10	1 ⁶
178	Spontaneous hot flow anomalies at Mars and Venus. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 9910-9923	2.6	12
177	CIMI simulations with newly developed multiparameter chorus and plasmaspheric hiss wave models. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 9344-9357	2.6	14
176	Traveling Foreshocks and Transient Foreshock Phenomena. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 9148-9168	2.6	18
175	What Happens Before a Southward IMF Turning Reaches the Magnetopause?. <i>Geophysical Research Letters</i> , 2017 , 44, 9159-9166	4.9	5

(2016-2017)

174	Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 9440-9463	2.6	11
173	The Role of Solar Wind Structures in the Generation of ULF Waves in the Inner Magnetosphere. <i>Solar Physics</i> , 2017 , 292, 1	2.6	3
172	Energetic particle loss through the magnetopause: A combined global MHD and test-particle study. Journal of Geophysical Research: Space Physics, 2017 , 122, 9329-9343	2.6	27
171	The Role of Solar Wind Structures in the Generation of ULF Waves in the Inner Magnetosphere 2017 , 653-667		
170	Multipoint spacecraft observations of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere on 1½ May 2014. <i>Annales Geophysicae</i> , 2016 , 34, 985-998	2	10
169	Ionosphere-magnetosphere energy interplay in the regions of diffuse aurora. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 6661-6673	2.6	7
168	Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 7608-7621	2.6	22
167	Inverse energy dispersion of energetic ions observed in the magnetosheath. <i>Geophysical Research Letters</i> , 2016 , 43, 7338-7347	4.9	5
166	Density variations in the Earth's magnetospheric cusps. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 2131-2142	2.6	7
165	Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock. <i>Physical Review Letters</i> , 2016 , 117, 215101	7.4	35
164	A neural network approach for identifying particle pitch angle distributions in Van Allen Probes data. <i>Space Weather</i> , 2016 , 14, 275-284	3.7	3
163	Outer radiation belt dropout dynamics following the arrival of two interplanetary coronal mass ejections. <i>Geophysical Research Letters</i> , 2016 , 43, 978-987	4.9	20
162	Wide field-of-view soft X-ray imaging for solar wind-magnetosphere interactions. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 3353-3361	2.6	14
161	Accurately characterizing the importance of wave-particle interactions in radiation belt dynamics: The pitfalls of statistical wave representations. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 7895-7899	2.6	21
160	Observations of energetic particle escape at the magnetopause: Early results from the MMS Energetic Ion Spectrometer (EIS). <i>Geophysical Research Letters</i> , 2016 , 43, 5960-5968	4.9	22
159	Do we know the actual magnetopause position for typical solar wind conditions?. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 6493-6508	2.6	23
158	Impacts of spontaneous hot flow anomalies on the magnetosheath and magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 3155-3169	2.6	34
157	The substructure of a flux transfer event observed by the MMS spacecraft. <i>Geophysical Research Letters</i> , 2016 , 43, 9434-9443	4.9	21

156	Superthermal electron magnetosphere-ionosphere coupling in the diffuse aurora in the presence of ECH waves. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 445-459	2.6	12
155	Conjugate observations of traveling convection vortices associated with transient events at the magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 2015-2035	2.6	15
154	The impact of a slow interplanetary coronal mass ejection on Venus. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 3489-3502	2.6	13
153	THE SOLAR WIND CHARGE-EXCHANGE PRODUCTION FACTOR FOR HYDROGEN. <i>Astrophysical Journal</i> , 2015 , 808, 143	4.7	22
152	Ion distributions in the Earth's foreshock: Hybrid-Vlasov simulation and THEMIS observations. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 3684-3701	2.6	33
151	On the dependence of storm time ULF wave power on magnetopause location: Impacts for ULF wave radial diffusion. <i>Geophysical Research Letters</i> , 2015 , 42, 9676-9684	4.9	27
150	Role of Multiple Atmospheric Reflections in Formation of Electron Distribution Function in the Diffuse Aurora Region. <i>Geophysical Monograph Series</i> , 2015 , 115-130	1.1	6
149	Magnetosheath plasma structures and their relation to foreshock processes. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 7687-7697	2.6	25
148	Electron distribution function formation in regions of diffuse aurora. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 9891-9915	2.6	32
147	Weak kinetic Alfvlī waves turbulence during the 14´November´2012 geomagnetic storm: Van Allen Probes observations. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 5504-5523	2.6	28
146	Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results. <i>Review of Scientific Instruments</i> , 2015 , 86, 071301	1.7	17
145	Asymmetric magnetospheric compressions and expansions in response to impact of inclined interplanetary shock. <i>Geophysical Research Letters</i> , 2015 , 42, 4716-4722	4.9	19
144	Relation between cusp ion structures and dayside reconnection for four IMF clock angles: OpenGGCM-LTPT results. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 4890-4906	2.6	13
143	THEMIS observation of intermittent turbulence behind the quasi-parallel and quasi-perpendicular shocks. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 7466-7476	2.6	9
142	Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and waveparticle interactions in the pre-midnight inner magnetosphere. <i>Annales Geophysicae</i> , 2015 , 33, 955-964	2	11
141	The global context of the 14 November 2012 storm event. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 1939-1956	2.6	8
140	Size and shape of the distant magnetotail. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 1028-1043	2.6	26
139	On lunar exospheric column densities and solar wind access beyond the terminator from ROSAT soft X-ray observations of solar wind charge exchange. <i>Journal of Geophysical Research E: Planets</i> , 2014 , 119, 1459-1478	4.1	20

(2013-2014)

138	Study of a global auroral Pc5 pulsation event with concurrent ULF waves. <i>Geophysical Research Letters</i> , 2014 , 41, 6547-6555	4.9	4
137	Plasma and energetic particle behaviors during asymmetric magnetic reconnection at the magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 1658-1672	2.6	28
136	Magnetosheath filamentary structures formed by ion acceleration at the quasi-parallel bow shock. Journal of Geophysical Research: Space Physics, 2014 , 119, 2593-2604	2.6	32
135	The plasmaspheric plume and magnetopause reconnection. <i>Geophysical Research Letters</i> , 2014 , 41, 223	-2428	63
134	A survey of hot flow anomalies at Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 978	-9296	16
133	Active current sheets and candidate hot flow anomalies upstream of Mercury's bow shock. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 853-876	2.6	15
132	Parametric dependencies of spontaneous hot flow anomalies. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 9823-9833	2.6	23
131	On the electron diffusion region in planar, asymmetric, systems. <i>Geophysical Research Letters</i> , 2014 , 41, 8673-8680	4.9	109
130	The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. <i>Physics of Plasmas</i> , 2014 , 21, 062308	2.1	175
129	Simultaneous ground- and space-based observations of the plasmaspheric plume and reconnection. <i>Science</i> , 2014 , 343, 1122-5	33.3	88
128	Large-scale flow vortices following a magnetospheric sudden impulse. <i>Journal of Geophysical Research: Space Physics</i> , 2013 , 118, 3055-3064	2.6	20
127	The Magnetospheric and Ionospheric Response to Solar Wind Dynamic Pressure Variations. <i>Geophysical Monograph Series</i> , 2013 , 1-8	1.1	1
126	THEMIS observations of compressional poloidal pulsations in the dawnside magnetosphere: A case study. <i>Journal of Geophysical Research: Space Physics</i> , 2013 , 118, 7665-7673	2.6	13
125	Transient and Quasi-Periodic (5🛭 5 Min) Events in the Outer Magnetosphere. <i>Geophysical Monograph Series</i> , 2013 , 173-182	1.1	24
124	Spontaneous hot flow anomalies at quasi-parallel shocks: 1. Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2013 , 118, 3357-3363	2.6	81
123	The Magnetospheric Response to Foreshock Pressure Pulses. <i>Geophysical Monograph Series</i> , 2013 , 293-	-3 <u>0.</u> 2	10
122	Science Objectives and Rationale for the Radiation Belt Storm Probes Mission. <i>Space Science Reviews</i> , 2013 , 179, 3-27	7.5	686
121	Spontaneous hot flow anomalies at quasi-parallel shocks: 2. Hybrid simulations. <i>Journal of Geophysical Research: Space Physics</i> , 2013 , 118, 173-180	2.6	72

120	First observations of foreshock bubbles upstream of Earth's bow shock: Characteristics and comparisons to HFAs. <i>Journal of Geophysical Research: Space Physics</i> , 2013 , 118, 1552-1570	2.6	78
119	Dynamics of the foreshock compressional boundary and its connection to foreshock cavities. Journal of Geophysical Research: Space Physics, 2013 , 118, 823-831	2.6	34
118	A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations. <i>Journal of Geophysical Research: Space Physics</i> , 2013 , 118, 2173-2184	2.6	35
117	Solar wind charge exchange and Earth's magnetosheath 2013 ,		1
116	Magnetopause reconnection and interlinked flux tubes. <i>Annales Geophysicae</i> , 2013 , 31, 1853-1866	2	7
115	The DXL and STORM sounding rocket mission 2013 ,		4
114	Generation of ULF Magnetic Pulsations in Response to Sudden Variations in Solar Wind Dynamic Pressure. <i>Geophysical Monograph Series</i> , 2013 , 265-271	1.1	7
113	Frequency doubling and field-aligned ion streaming in a long-period poloidal pulsation. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		14
112	THEMIS observations of unusual bow shock motion attending a transient magnetospheric event. Journal of Geophysical Research, 2012, 117, n/a-n/a		6
111	The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		56
110	Hot flow anomalies at Venus. Journal of Geophysical Research, 2012, 117, n/a-n/a		29
109	Dawn-dusk asymmetries in the Earth's magnetosheath. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a	-n/a	51
108	Short large-amplitude magnetic structures (SLAMS) at Venus. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		14
107	IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites mission concept proposed for the ESA M3 2020/2022 launch. <i>Experimental Astronomy</i> , 2012 , 33, 365-40	01 ^{1.3}	
106	Spatial distribution of rolled up Kelvin-Helmholtz vortices at Earth's dayside and flank magnetopause. <i>Annales Geophysicae</i> , 2012 , 30, 1025-1035	2	48
105	Interball-1 observations of flux transfer events. <i>Annales Geophysicae</i> , 2012 , 30, 1451-1462	2	3
104	Inner plasma structure of the low-latitude reconnection layer. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		7
103	Survival of flux transfer event (FTE) flux ropes far along the tail magnetopause. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		34

102	Concerning the motion and orientation of flux transfer events produced by component and antiparallel reconnection. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		9
101	THEMIS observations of a transient event at the magnetopause. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		12
100	Propagation of a sudden impulse through the magnetosphere initiating magnetospheric Pc5 pulsations. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		26
99	Magnetopause reconnection across wide local time. <i>Annales Geophysicae</i> , 2011 , 29, 1683-1697	2	49
98	First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake. <i>Space Science Reviews</i> , 2011 , 165, 93-107	7.5	41
97	ARTEMIS Science Objectives. <i>Space Science Reviews</i> , 2011 , 165, 59-91	7.5	40
96	Radiation belt storm probes: Resolving fundamental physics with practical consequences. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2011 , 73, 1417-1424	2	22
95	Extended magnetic reconnection across the dayside magnetopause. <i>Physical Review Letters</i> , 2011 , 107, 025004	7.4	39
94	Dayside magnetopause transients correlated with changes of the magnetosheath magnetic field orientation. <i>Annales Geophysicae</i> , 2011 , 29, 687-699	2	13
93	Concerning the motion of flux transfer events generated by component reconnection across the dayside magnetopause. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		9
92	Foreshock bubbles and their global magnetospheric impacts. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		87
91	Time History of Events and Macroscale Interactions during Substorms observations of a series of hot flow anomaly events. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		65
90	Thin magnetosheath as a consequence of the magnetopause deformation: THEMIS observations. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		24
89	Magnetopause expansions for quasi-radial interplanetary magnetic field: THEMIS and Geotail observations. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		60
88	Concerning the occurrence pattern of flux transfer events on the dayside magnetopause. <i>Annales Geophysicae</i> , 2009 , 27, 895-903	2	9
87	Geotail observations of FTE velocities. <i>Annales Geophysicae</i> , 2009 , 27, 83-92	2	11
86	Cavities of weak magnetic field strength in the wake of FTEs: Results from global magnetospheric MHD simulations. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	8
85	THEMIS observations of extreme magnetopause motion caused by a hot flow anomaly. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		59

84	Foreshock compressional boundary. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		49
83	THEMIS observations of compressional pulsations in the dawn-side magnetosphere: a case study. <i>Annales Geophysicae</i> , 2009 , 27, 3725-3735	2	17
82	Magnetosheath cavities: case studies using Cluster observations. <i>Annales Geophysicae</i> , 2009 , 27, 3765-3	37 <u>2</u> 80	14
81	Seasonal dependence of Interball flux transfer events. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	10
80	THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	73
79	Crater FTEs: Simulation results and THEMIS observations. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	35
78	Reconstruction of a flux transfer event based on observations from five THEMIS satellites. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		14
77	Tail reconnection triggering substorm onset. <i>Science</i> , 2008 , 321, 931-5	33.3	464
76	On the edge of the foreshock: model-data comparisons. <i>Annales Geophysicae</i> , 2008 , 26, 1539-1544	2	32
75	The statistics of foreshock cavities: results of a Cluster survey. <i>Annales Geophysicae</i> , 2008 , 26, 3653-366	572	19
74	First Results from the THEMIS Mission. Space Science Reviews, 2008, 141, 453-476	7.5	143
73	THEMIS Science Objectives and Mission Phases. <i>Space Science Reviews</i> , 2008 , 141, 35-59	7.5	143
72	Flux transfer events in the cusp. Geophysical Research Letters, 2007, 34,	4.9	37
71	Formation of hot flow anomalies and solitary shocks. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/	'a	92
70	MHD simulation for the interaction of an interplanetary shock with the Earth's magnetosphere. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		70
69	Kinetic aspects of foreshock cavities. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	22
68	Observations of multiple X-line structure in the Earth's magnetotail current sheet: A Cluster case study. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	91
67	Flux pile-up and plasma depletion at the high latitude dayside magnetopause during southward interplanetary magnetic field: a cluster event study. <i>Annales Geophysicae</i> , 2005 , 23, 2259-2264	2	6

(1999-2005)

Flux transfer events on the high-latitude magnetopause: Interball-1 observations. <i>Annales Geophysicae</i> , 2005 , 23, 3549-3559	2	8
Radial dependence of foreshock cavities: a case study. <i>Annales Geophysicae</i> , 2004 , 22, 4143-4151	2	11
Simultaneous observations of magnetopause flux transfer events and of their associated signatures at ionospheric altitudes. <i>Annales Geophysicae</i> , 2004 , 22, 2181-2199	2	15
Search for plasma and magnetic field cavities in magnetosheath. <i>Advances in Space Research</i> , 2003 , 31, 1455-1462	2.4	2
Pressure-pulse interaction with the magnetosphere and ionosphere. <i>Journal of Geophysical Research</i> , 2003 , 108,		37
The structure of hot flow anomalies in the magnetosheath. <i>Advances in Space Research</i> , 2002 , 30, 2737-2:	7. 4 4	13
Geosynchronous magnetic field temporal response to solar wind and IMF variations. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 32-1-SMP 32-10		36
Quiet time variability of the geosynchronous magnetic field and its response to the solar wind. Journal of Geophysical Research, 2002 , 107, SMP 16-1-SMP 16-10		21
Tracking transient events through geosynchronous orbit and in the high-latitude ionosphere. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 6-1		9
Signatures of traveling convection vortices in ground magnetograms under the equatorial electrojet. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 16-1		3
Wind observations of foreshock cavities: A case study. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 4-1		86
Solar wind preconditioning in the flank foreshock: IMP 8 observations. <i>Journal of Geophysical Research</i> , 2001 , 106, 21675-21688		32
Energetic proton and electron dispersion signatures in the nightside magnetosheath supporting their leakage out of the magnetopause. <i>Journal of Geophysical Research</i> , 2000 , 105, 15729-15739		12
Magnetopause motion driven by interplanetary magnetic field variations. <i>Journal of Geophysical Research</i> , 2000 , 105, 25155-25169		44
Testing models for traveling convection vortices: Two case studies. <i>Geophysical Research Letters</i> , 2000 , 27, 325-328	4.9	7
Magnetosheath response to the interplanetary magnetic field tangential discontinuity. <i>Journal of Geophysical Research</i> , 2000 , 105, 25113-25121		27
A statistical study of the magnetosphere boundary crossings by the Geotail satellite. <i>Geophysical Research Letters</i> , 2000 , 27, 2881-2884	4.9	10
Comprehensive study of the magnetospheric response to a hot flow anomaly. <i>Journal of Geophysical Research</i> , 1999 , 104, 4577-4593		146
	Radial dependence of foreshock cavities: a case study. <i>Annales Geophysicae</i> , 2004, 22, 4143-4151 Simultaneous observations of magnetopause flux transfer events and of their associated signatures at ionospheric altitudes. <i>Annales Geophysicae</i> , 2004, 22, 2181-2199 Search for plasma and magnetic field cavities in magnetosheath. <i>Advances in Space Research</i> , 2003, 31, 1455-1462 Pressure-pulse interaction with the magnetosphere and ionosphere. <i>Journal of Geophysical Research</i> , 2003, 108, The structure of hot flow anomalies in the magnetosheath. <i>Advances in Space Research</i> , 2002, 30, 2737-2 Geosynchronous magnetic field temporal response to solar wind and IMF variations. <i>Journal of Geophysical Research</i> , 2002, 107, SMP 32-1-SMP 32-10 Quiet time variability of the geosynchronous magnetic field and its response to the solar wind. <i>Journal of Geophysical Research</i> , 2002, 107, SMP 6-10 Tracking transient events through geosynchronous orbit and in the high-latitude ionosphere. <i>Journal of Geophysical Research</i> , 2002, 107, SMP 6-1 Signatures of traveling convection vortices in ground magnetograms under the equatorial electrojet. <i>Journal of Geophysical Research</i> , 2002, 107, SMP 16-1 Wind observations of foreshock cavities: A case study. <i>Journal of Geophysical Research</i> , 2002, 107, SMP 4-1 Solar wind preconditioning in the flank foreshock: IMP 8 observations. <i>Journal of Geophysical Research</i> , 2002, 107, SMP 4-1 Solar wind preconditioning in the flank foreshock: IMP 8 observations. <i>Journal of Geophysical Research</i> , 2000, 105, 25157-21688 Energetic proton and electron dispersion signatures in the nightside magnetosheath supporting their leakage out of the magnetopause. <i>Journal of Geophysical Research</i> , 2000, 105, 25157-2168 Energetic proton and electron dispersion signatures in the nightside magnetosheath supporting their leakage out of the magnetopause. <i>Journal of Geophysical Research</i> , 2000, 105, 25157-215739 Magnetosheath response to the interplanetary magnetic field tangential discontinuity. <i>Journ</i>	Radial dependence of foreshock cavities: a case study. Annales Geophysicae, 2004, 22, 4143-4151 2 Simultaneous observations of magnetopause flux transfer events and of their associated signatures at ionospheric altitudes. Annales Geophysicae, 2004, 22, 2181-2199 2 Search for plasma and magnetic field cavities in magnetosheath. Advances in Space Research, 2003, 31, 1455-1462 Pressure-pulse interaction with the magnetosphere and ionosphere. Journal of Geophysical Research, 2003, 108, The structure of hot flow anomalies in the magnetosheath. Advances in Space Research, 2002, 30, 2737-2744 Geosynchronous magnetic field temporal response to solar wind and IMF variations. Journal of Geophysical Research, 2002, 107, SMP 32-1-SMP 32-10 Quiet time variability of the geosynchronous magnetic field and its response to the solar wind. Journal of Geophysical Research, 2002, 107, SMP 16-1-SMP 16-10 Tracking transient events through geosynchronous orbit and in the high-latitude ionosphere. Journal of Geophysical Research, 2002, 107, SMP 6-1 Signatures of traveling convection vortices in ground magnetograms under the equatorial electrojet. Journal of Geophysical Research, 2002, 107, SMP 16-1 Wind observations of foreshock cavities: A case study. Journal of Geophysical Research, 2002, 107, SMP 4-1 Solar wind preconditioning in the flank foreshock: IMP 8 observations. Journal of Geophysical Research, 2002, 107, SMP 4-1 Solar wind preconditioning in the flank foreshock: IMP 8 observations. Journal of Geophysical Research, 2000, 105, 15729-15739 Magnetopause motion driven by interplanetary magnetic field variations. Journal of Geophysical Research Letters, 2000, 105, 25135-25169 Testing models for traveling convection vortices: Two case studies. Geophysical Research Letters, 2000, 27, 325-328 Astatistical study of the magnetosphere boundary crossings by the Geotail satellite. Geophysical Research Letters, 2000, 27, 2881-2884 Comprehensive study of the magnetospheric response to a hot flow anomaly. Journal of

48	Concerning the location of magnetopause merging as a function of the magnetopause current strength. <i>Journal of Geophysical Research</i> , 1998 , 103, 6675-6684		38
47	The effect of magnetosheath plasma flow on flux transfer events produced by the onset of merging at a single X line. <i>Journal of Geophysical Research</i> , 1998 , 103, 6693-6702		13
46	Gross deformation of the dayside magnetopause. <i>Geophysical Research Letters</i> , 1998 , 25, 453-456	4.9	49
45	Transient flux enhancements in the magnetosheath. <i>Geophysical Research Letters</i> , 1998 , 25, 1273-1276	4.9	77
44	High-latitude ionospheric transient events in a global context. <i>Journal of Geophysical Research</i> , 1997 , 102, 17499-17508		16
43	A case study of oppositely propagating AlfvBic fluctuations in the solar wind and magnetosheath. <i>Geophysical Research Letters</i> , 1997 , 24, 3133-3136	4.9	16
42	on the source region of traveling convection vortices. <i>Geophysical Research Letters</i> , 1997 , 24, 237-240	4.9	16
41	The case for quasi-steady models in describing the physics of dayside merging. <i>Eos</i> , 1996 , 77, 246	1.5	3
40	Coupling processes at the magnetopause. Surveys in Geophysics, 1995, 16, 267-298	7.6	
39	A case study of transient event motion in the magnetosphere and in the ionosphere. <i>Journal of Geophysical Research</i> , 1995 , 100, 35		45
38	A case and statistical study of transient magnetic field events at geosynchronous orbit and their solar wind origin. <i>Journal of Geophysical Research</i> , 1995 , 100, 5643		39
37	A large statistical study of the entry of interplanetary magnetic field Y-component into the magnetosphere. <i>Geophysical Research Letters</i> , 1995 , 22, 2083-2086	4.9	55
36	Signatures of flux erosion from the dayside magnetosphere. <i>Journal of Geophysical Research</i> , 1994 , 99, 8513		30
35	Reply to Lockwood, Cowley, and Smith. <i>Geophysical Research Letters</i> , 1994 , 21, 1821-1822	4.9	3
34	Concerning flux erosion from the dayside magnetosphere. <i>Journal of Geophysical Research</i> , 1994 , 99, 13425		41
33	Prognoz 10 energetic particle data: Leakage from the magnetosphere versus bow shock acceleration. <i>Journal of Geophysical Research</i> , 1994 , 99, 23461		9
32	A multisatellite study of a pseudo-substorm onset in the near-Earth magnetotail. <i>Journal of Geophysical Research</i> , 1993 , 98, 19355-19367		69
31	By fluctuations in the magnetosheath and azimuthal flow velocity transients in the dayside ionosphere. <i>Geophysical Research Letters</i> , 1993 , 20, 1719-1722	4.9	29

30	Upper limits on the contribution of flux transfer events to ionospheric convection. <i>Geophysical Research Letters</i> , 1993 , 20, 2829-2832	4.9	26
29	Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. <i>Journal of Geophysical Research</i> , 1993 , 98, 21421-21450		234
28	Magnetospheric plasma flows associated with boundary waves and flux transfer events. <i>Geophysical Research Letters</i> , 1992 , 19, 1903-1906	4.9	35
27	Energetic electrons and ions in the magnetosheath at low and medium latitudes: Prognoz 10 data. Journal of Geophysical Research, 1992 , 97, 14849		17
26	Solar wind control of the magnetopause shape, location, and motion. <i>Journal of Geophysical Research</i> , 1991 , 96, 5489		396
25	Ion burst event in the Earth's dayside magnetosheath. <i>Geophysical Research Letters</i> , 1991 , 18, 377-380	4.9	4
24	Evidence for Flux Ropes in the Earth's Magnetotail. <i>Geophysical Monograph Series</i> , 1990 , 637-646	1.1	23
23	A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations. <i>Journal of Geophysical Research</i> , 1990 , 95, 3755		242
22	Upstream pressure variations associated with the bow shock and their effects on the magnetosphere. <i>Journal of Geophysical Research</i> , 1990 , 95, 3773		161
21	Possible leakage of energetic particles from the magnetosphere into the upstream region on June 7, 1985. <i>Journal of Geophysical Research</i> , 1990 , 95, 20825		15
20	Solar wind dynamic pressure variations and transient magnetospheric signatures. <i>Geophysical Research Letters</i> , 1989 , 16, 13-16	4.9	113
19	Reply to Comment on Bolar wind dynamic pressure variations and transient magnetospheric signatures? [Geophysical Research Letters, 1989, 16, 1200-1202]	4.9	28
18	The magnetospheric response to 8-minute period strong-amplitude upstream pressure variations. Journal of Geophysical Research, 1989 , 94, 2505		211
17	Some low-altitude cusp dependencies on the interplanetary magnetic field. <i>Journal of Geophysical Research</i> , 1989 , 94, 8921		278
16	Charge states of substorm particle injections. <i>Geophysical Research Letters</i> , 1988 , 15, 1283-1286	4.9	8
15	Simultaneous energetic particle observations at geostationary orbit and in the upstream solar wind: Evidence for leakage during the magnetospheric compression event of November 1, 1984. Journal of Geophysical Research, 1988, 93, 14317		19
14	The magnetosphere as a sufficient source for upstream ions on November 1, 1984. <i>Journal of Geophysical Research</i> , 1988 , 93, 14328		40
13	On the 3-dimensional structure of plasmoids. <i>Geophysical Research Letters</i> , 1987 , 14, 636-639	4.9	150

12	The magnetosphere as a source of energetic magnetosheath ions. <i>Geophysical Research Letters</i> , 1987 , 14, 1011-1014	4.9	35
11	Energetic magnetospheric ions at the dayside magnetopause: Leakage or merging?. <i>Journal of Geophysical Research</i> , 1987 , 92, 12097		85
10	Magnetic field drift shell splitting: Cause of unusual dayside particle pitch angle distributions during storms and substorms. <i>Journal of Geophysical Research</i> , 1987 , 92, 13485		110
9	Major flattening of the distant geomagnetic tail. <i>Journal of Geophysical Research</i> , 1986 , 91, 4223		47
8	Magnetospheric particle injection and the upstream ion event of September 5, 1984. <i>Geophysical Research Letters</i> , 1986 , 13, 1376-1379	4.9	32
7	Twisting of the Geomagnetic Tail. Astrophysics and Space Science Library, 1986, 731-738	0.3	17
6	The distant magnetotail's response to a strong interplanetary magnetic field By: Twisting, flattening, and field line bending. <i>Journal of Geophysical Research</i> , 1985 , 90, 4011		107
6 5			107 35
	flattening, and field line bending. <i>Journal of Geophysical Research</i> , 1985 , 90, 4011 Magnetic field properties of the distant magnetotail magnetopause and boundary layer. <i>Journal of</i>	4.9	,
5	flattening, and field line bending. <i>Journal of Geophysical Research</i> , 1985 , 90, 4011 Magnetic field properties of the distant magnetotail magnetopause and boundary layer. <i>Journal of Geophysical Research</i> , 1985 , 90, 9561 The two-lobe structure of the distant (X I200 Re) magnetotail. <i>Geophysical Research Letters</i> , 1984 ,		35
5	flattening, and field line bending. <i>Journal of Geophysical Research</i> , 1985 , 90, 4011 Magnetic field properties of the distant magnetotail magnetopause and boundary layer. <i>Journal of Geophysical Research</i> , 1985 , 90, 9561 The two-lobe structure of the distant (X [200 Re) magnetotail. <i>Geophysical Research Letters</i> , 1984 , 11, 1066-1069		35