Xiang Gao

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8731834/publications.pdf
Version: 2024-02-01

Enhancement of thermoelectric properties of <scp> Dâ€A</scp> conjugated polymer through
1 constructing random copolymers with more electronic donors. Journal of Polymer Science, 2022, 60,
3.8 1002-1012.

2 Highly stretchable All-polymer solar cells enabled by Siloxane-terminated side chains and molecular weight control. Chemical Engineering Journal, 2022, 440, 135829.

5

Effects of subtle change in side chains on the photovoltaic performance of small molecular donors for solar cells. Chinese Chemical Letters, 2022, 33, 4659-4663.
9.0

Novel Third Components with (Thio)barbituric Acid as the End Groups Improving the Efficiency of
Ternary Solar Cells. ACS Applied Materials \& Interfaces, 2022, 14, 23701-23708.
Novel Third Components with (Thio)barbituric Acid as the End Groups Improving the E
Ternary Solar Cells. ACS Applied Materials \& Interfaces, 2022, 14, 23701-23708.
8.0

13

Progress of Monomeric Perylene Diimide Derivatives As Non-Fullerene Acceptors for Organic Solar Cells. Journal of Electronic Materials, 2022, 51, 4224-4237.

Ternary copolymers containing 3,4-dicyanothiophene for efficient organic solar cells with reduced energy loss. Journal of Materials Chemistry A, 2021, 9, 13522-13530.
10.3

23

7 Voltage loss analysis of novel non-fullerene acceptors with chlorinated non-conjugated thienyl
$7 \quad$ chains. Dyes and Pigments, 2021, 188, 109162.
3.7

10

8 Fine-Tuning the Dipole Moment of Asymmetric Non-Fullerene Acceptors Enabling Efficient and Stable
Organic Solar Cells. ACS Applied Materials \& Interfaces, 2021, 13, 23983-23992.
8.0

41

9 Fluorinated Perylene Dimide Dimer for Organic Solar Cells as Nonâ€fullerene Acceptor. Asian Journal
9 of Organic Chemistry, 2021, 10, 3374-3379.

10 A new fluorinated pyran-bridged A-D-A type small molecular acceptor for organic solar cells. Dyes
and Pigments, 2020, 175, 108165.
3.7

18
\square

> 11 Non-conjugated diketone as a linkage for enhancing the rate performance of poly(perylenediimides).
> Journal of Materials Chemistry A, 2020, 8, 19283-19289.
10.3

28

12 Comparison Study of the Chlorination Positions in Wide Band Gap Donor Polymers. Journal of 12 Physical Chemistry C, 2020, 124, 24592-24600.
3.1

12
5.5

37
Enhancement of the thermoelectric performance of DPP based polymers by introducing one
13 3,4-ethylenedioxythiophene electron-rich building block. Journal of Materials Chemistry C, 2020, 8, 10859-10867.

Effect of microencapsulated ammonium polyphosphate on the durability and fire resistance of
14 waterborne intumescent fire-retardant coatings. Journal of Coatings Technology Research, 2019, 16,
2.5

31 135-145.

15 Structural regulation of polypyrrole nanospheres guided by hydrophobic chain length of surfactants. Journal of Materials Science, 2019, 54, 14309-14319.
$3.7 \quad 8$

Fluorinated Lowâ€Đimensional Ruddlesdenâe"Popper Perovskite Solar Cells with over 17\% Power
Conversion Efficiency and Improved Stability. Advanced Materials, 2019, 31, e1901673.
21.0

197

A diketopyrrolopyrrole-based nonfullerene acceptor for organic solar cells with a high open-circuit
voltage of 1.17â€\%oV. Polymer Journal, 2019, 51, 895-904.
2.7

4

A facile strategy for preparing Gemini surfactantâ€modified montmorillonite and its effect on the
20 morphology and mechanical properties of polyethylene/polystyrene. Polymer Composites, 2019, 40,
triphenylaminesilole-carbazole-fluorene. Materials Chemistry and Physics, 2018, 212, 208-213.

Fine-Tuning the Quasi-3D Geometry: Enabling Efficient Nonfullerene Organic Solar Cells Based on
Perylene Diimides. ACS Applied Materials \& Interfaces, 2018, 10, 762-768.
8.0

65
$25 \quad$ An effective approach to obtain high efficiency red light-emitting polymers via incorporating
benzodithiazole units. Dyes and Pigments, 2018, 156, 39-44.
3.7
29 High Performance Soluble Polyimides from Ladder-Type Fluorinated Dianhydride with Polymorphism.

