

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8731834/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Enhancement of thermoelectric properties of <scp>Dâ€A</scp> conjugated polymer through constructing random copolymers with more electronic donors. Journal of Polymer Science, 2022, 60, 1002-1012.           | 3.8  | 8         |
| 2  | Highly stretchable All-polymer solar cells enabled by Siloxane-terminated side chains and molecular weight control. Chemical Engineering Journal, 2022, 440, 135829.                                          | 12.7 | 5         |
| 3  | Effects of subtle change in side chains on the photovoltaic performance of small molecular donors for solar cells. Chinese Chemical Letters, 2022, 33, 4659-4663.                                             | 9.0  | 11        |
| 4  | Novel Third Components with (Thio)barbituric Acid as the End Groups Improving the Efficiency of Ternary Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 23701-23708.                          | 8.0  | 13        |
| 5  | Progress of Monomeric Perylene Diimide Derivatives As Non-Fullerene Acceptors for Organic Solar<br>Cells. Journal of Electronic Materials, 2022, 51, 4224-4237.                                               | 2.2  | 7         |
| 6  | Ternary copolymers containing 3,4-dicyanothiophene for efficient organic solar cells with reduced energy loss. Journal of Materials Chemistry A, 2021, 9, 13522-13530.                                        | 10.3 | 23        |
| 7  | Voltage loss analysis of novel non-fullerene acceptors with chlorinated non-conjugated thienyl chains. Dyes and Pigments, 2021, 188, 109162.                                                                  | 3.7  | 10        |
| 8  | Fine-Tuning the Dipole Moment of Asymmetric Non-Fullerene Acceptors Enabling Efficient and Stable<br>Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 23983-23992.                          | 8.0  | 41        |
| 9  | Fluorinated Perylene Diimide Dimer for Organic Solar Cells as Nonâ€fullerene Acceptor. Asian Journal of Organic Chemistry, 2021, 10, 3374-3379.                                                               | 2.7  | 11        |
| 10 | A new fluorinated pyran-bridged A-D-A type small molecular acceptor for organic solar cells. Dyes and Pigments, 2020, 175, 108165.                                                                            | 3.7  | 18        |
| 11 | Non-conjugated diketone as a linkage for enhancing the rate performance of poly(perylenediimides).<br>Journal of Materials Chemistry A, 2020, 8, 19283-19289.                                                 | 10.3 | 28        |
| 12 | Comparison Study of the Chlorination Positions in Wide Band Gap Donor Polymers. Journal of<br>Physical Chemistry C, 2020, 124, 24592-24600.                                                                   | 3.1  | 12        |
| 13 | Enhancement of the thermoelectric performance of DPP based polymers by introducing one<br>3,4-ethylenedioxythiophene electron-rich building block. Journal of Materials Chemistry C, 2020, 8,<br>10859-10867. | 5.5  | 37        |
| 14 | Effect of microencapsulated ammonium polyphosphate on the durability and fire resistance of<br>waterborne intumescent fire-retardant coatings. Journal of Coatings Technology Research, 2019, 16,<br>135-145. | 2.5  | 31        |
| 15 | Structural regulation of polypyrrole nanospheres guided by hydrophobic chain length of surfactants. Journal of Materials Science, 2019, 54, 14309-14319.                                                      | 3.7  | 8         |
| 16 | Fluorinated Lowâ€Ðimensional Ruddlesden–Popper Perovskite Solar Cells with over 17% Power<br>Conversion Efficiency and Improved Stability. Advanced Materials, 2019, 31, e1901673.                            | 21.0 | 197       |
| 17 | A diketopyrrolopyrrole-based nonfullerene acceptor for organic solar cells with a high open-circuit voltage of 1.17 V. Polymer Journal, 2019, 51, 895-904.                                                    | 2.7  | 4         |
| 18 | Pyran-bridged A-D-A type small molecular acceptors for organic solar cells. Solar Energy, 2019, 183, 463-468.                                                                                                 | 6.1  | 15        |

XIANG GAO

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The fabrication of nanostructures with a large range of dimensions and the potential application for light outcoupling in organic light-emitting diodes. Journal of Micromechanics and Microengineering, 2019, 29, 035007. | 2.6  | 4         |
| 20 | A facile strategy for preparing Gemini surfactantâ€modified montmorillonite and its effect on the<br>morphology and mechanical properties of polyethylene/polystyrene. Polymer Composites, 2019, 40,<br>3254-3263.         | 4.6  | 2         |
| 21 | Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells. Solar Energy<br>Materials and Solar Cells, 2019, 189, 103-117.                                                                      | 6.2  | 54        |
| 22 | A new nonfullerene acceptor based on perylene diimides for organic solar cells. Journal of Materials<br>Science: Materials in Electronics, 2018, 29, 10362-10368.                                                          | 2.2  | 12        |
| 23 | Synthesis and characterization of novel red-emitting conjugated polymers based on triphenylaminesilole-carbazole-fluorene. Materials Chemistry and Physics, 2018, 212, 208-213.                                            | 4.0  | 9         |
| 24 | Fine-Tuning the Quasi-3D Geometry: Enabling Efficient Nonfullerene Organic Solar Cells Based on<br>Perylene Diimides. ACS Applied Materials & Interfaces, 2018, 10, 762-768.                                               | 8.0  | 65        |
| 25 | An effective approach to obtain high efficiency red light-emitting polymers via incorporating benzodithiazole units. Dyes and Pigments, 2018, 156, 39-44.                                                                  | 3.7  | 10        |
| 26 | Influence of Ca <scp>CO</scp> <sub>3</sub> /glass fiber hybrid fillers on the mechanical and thermal properties of polytetrafluoroethylene. Advances in Polymer Technology, 2018, 37, 2811-2819.                           | 1.7  | 8         |
| 27 | Chlorinated Wide-Bandgap Donor Polymer Enabling Annealing Free Nonfullerene Solar Cells with the Efficiency of 11.5%. Journal of Physical Chemistry Letters, 2018, 9, 6955-6962.                                           | 4.6  | 70        |
| 28 | Recent development of efficient A-D-A type fused-ring electron acceptors for organic solar. Solar<br>Energy, 2018, 174, 171-188.                                                                                           | 6.1  | 50        |
| 29 | High Performance Soluble Polyimides from Ladder-Type Fluorinated Dianhydride with Polymorphism.<br>Polymers, 2018, 10, 546.                                                                                                | 4.5  | 25        |
| 30 | Adsorption and Micellization of Gemini Surfactants with Diethylammonium Headgroups: Effect of the Spacer Rigidity. Journal of Surfactants and Detergents, 2017, 20, 765-775.                                               | 2.1  | 16        |
| 31 | Efficient deep-red electroluminescent donor-acceptor copolymers based on 6,7-dichloroquinoxaline.<br>Organic Electronics, 2017, 46, 276-282.                                                                               | 2.6  | 16        |
| 32 | Deep-red organic light-emitting diodes with stable electroluminescent spectra based on zinc complex host material. RSC Advances, 2017, 7, 40533-40538.                                                                     | 3.6  | 9         |
| 33 | Synthesis and characterization of conjugated polymers containing bromide side chain. Journal of Materials Science: Materials in Electronics, 2017, 28, 18049-18056.                                                        | 2.2  | 9         |
| 34 | Preparation and performances of novel waterborne intumescent fire retardant coatings. Progress in<br>Organic Coatings, 2016, 95, 100-106.                                                                                  | 3.9  | 52        |
| 35 | Non-fullerene small molecule acceptors based on perylene diimides. Journal of Materials Chemistry A, 2016, 4, 17604-17622.                                                                                                 | 10.3 | 281       |
| 36 | Highly efficient green PLED based on triphenlyaminesilole-carbazole-fluorene copolymers with TPBI as the hole blocking layer. Dyes and Pigments, 2016, 127, 155-160.                                                       | 3.7  | 22        |

XIANG GAO

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis and characterization of novel polymers containing aminophenylsilole. Polymer Journal, 2016, 48, 723-728.                                                                                                                   | 2.7 | 5         |
| 38 | Highly selective palladium-catalyzed Stille coupling reaction toward chlorine-containing NIR electroluminescent polymers. Journal of Materials Chemistry C, 2015, 3, 7463-7468.                                                      | 5.5 | 24        |
| 39 | Highly selective Palladium-catalyzed Suzuki coupling reaction toward chlorine-containing electroluminescence polymers. Dyes and Pigments, 2015, 120, 112-117.                                                                        | 3.7 | 14        |
| 40 | A Straightforward Synthesis of Chlorineâ€Bearing Donor–Acceptor Alternating Copolymers with Deep<br>Frontier Orbital Levels. Macromolecular Chemistry and Physics, 2014, 215, 1388-1395.                                             | 2.2 | 17        |
| 41 | Straight forward synthesis of conjugated polymers for deep red to NIR PLED containing chlorine atoms on the backbone. Organic Electronics, 2014, 15, 1440-1447.                                                                      | 2.6 | 14        |
| 42 | The dual temperature/pH-sensitive multiphase behavior of poly(N-isopropylacrylamide-co-acrylic acid)<br>microgels for potential application in in situ gelling system. Colloids and Surfaces B: Biointerfaces,<br>2011, 84, 103-110. | 5.0 | 72        |
| 43 | Chlorination converting one efficient polymeric donor to an effective electron acceptor in organic solar cells. Nano Select, 0, , .                                                                                                  | 3.7 | 3         |