Ru Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8731275/publications.pdf

Version: 2024-02-01

29994 106150 22,500 71 54 65 citations h-index g-index papers 73 73 73 18771 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering, 2017, 1, .	11.6	1,982
2	An ultrafast rechargeable aluminium-ion battery. Nature, 2015, 520, 324-328.	13.7	1,970
3	A small-molecule dye for NIR-II imaging. Nature Materials, 2016, 15, 235-242.	13.3	1,314
4	Nanotube Molecular Transporters:  Internalization of Carbon Nanotubeâ^Protein Conjugates into Mammalian Cells. Journal of the American Chemical Society, 2004, 126, 6850-6851.	6.6	1,284
5	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews, 2015, 115, 10816-10906.	23.0	1,151
6	A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 2009, 4, 773-780.	15.6	1,068
7	Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nature Medicine, 2012, 18, 1841-1846.	15.2	836
8	Through-skull fluorescence imaging of the brain in a new near-infrared window. Nature Photonics, 2014, 8, 723-730.	15.6	829
9	Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8943-8948.	3.3	817
10	Ag ₂ S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window. ACS Nano, 2012, 6, 3695-3702.	7.3	669
11	Inâ€Vivo Fluorescence Imaging with Ag ₂ S Quantum Dots in the Second Nearâ€Infrared Region. Angewandte Chemie - International Edition, 2012, 51, 9818-9821.	7.2	645
12	Nearâ€Infraredâ€II Molecular Dyes for Cancer Imaging and Surgery. Advanced Materials, 2019, 31, e1900321.	11.1	631
13	Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nature Communications, 2014, 5, 4206.	5.8	470
14	A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nature Communications, 2017, 8, 15269.	5.8	458
15	Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nature Communications, 2017, 8, 14283.	5.8	453
16	Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nature Communications, 2017, 8, 737.	5.8	416
17	In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nature Biotechnology, 2019, 37, 1322-1331.	9.4	398
18	Donor Engineering for NIR-II Molecular Fluorophores with Enhanced Fluorescent Performance. Journal of the American Chemical Society, 2018, 140, 1715-1724.	6.6	379

#	Article	IF	Citations
19	In Vivo Fluorescence Imaging in the Second Near-Infrared Window with Long Circulating Carbon Nanotubes Capable of Ultrahigh Tumor Uptake. Journal of the American Chemical Society, 2012, 134, 10664-10669.	6.6	373
20	Rational Design of Molecular Fluorophores for Biological Imaging in the NIRâ€I Window. Advanced Materials, 2017, 29, 1605497.	11.1	356
21	A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nature Communications, 2018, 9, 1171.	5.8	353
22	Traumatic Brain Injury Imaging in the Second Nearâ€Infrared Window with a Molecular Fluorophore. Advanced Materials, 2016, 28, 6872-6879.	11.1	311
23	Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm. Angewandte Chemie - International Edition, 2015, 54, 14758-14762.	7.2	310
24	Bright quantum dots emitting at $\hat{a}^{1}/41,600$ nm in the NIR-IIb window for deep tissue fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6590-6595.	3.3	310
25	High Coulombic efficiency aluminum-ion battery using an AlCl ₃ -urea ionic liquid analog electrolyte. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 834-839.	3.3	306
26	3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminumâ€lon Battery. Advanced Materials, 2016, 28, 9218-9222.	11.1	302
27	Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy. ACS Nano, 2013, 7, 3644-3652.	7.3	279
28	Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000â€nm. Angewandte Chemie - International Edition, 2013, 52, 13002-13006.	7.2	261
29	Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 962-967.	3.3	230
30	Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials, 2013, 34, 3639-3646.	5.7	228
31	Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nature Communications, 2011, 2, 466.	5.8	221
32	Plasmonic silver nanoshells for drug and metabolite detection. Nature Communications, 2017, 8, 220.	5.8	166
33	Light-sheet microscopy in the near-infrared II window. Nature Methods, 2019, 16, 545-552.	9.0	151
34	3D NIRâ€II Molecular Imaging Distinguishes Targeted Organs with Highâ€Performance NIRâ€II Bioconjugates. Advanced Materials, 2018, 30, e1705799.	11.1	150
35	A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nature Medicine, 2014, 20, 948-953.	15.2	142
36	Diagnosis of Zika virus infection on a nanotechnology platform. Nature Medicine, 2017, 23, 548-550.	15.2	130

#	Article	IF	CITATIONS
37	Molecular Imaging in the Second Nearâ€Infrared Window. Advanced Functional Materials, 2019, 29, 1900566.	7.8	125
38	Molecular Cancer Imaging in the Second Nearâ€Infrared Window Using a Renalâ€Excreted NIRâ€II Fluorophoreâ€Peptide Probe. Advanced Materials, 2018, 30, e1800106.	11.1	115
39	Nearâ€Infrared IIb Fluorescence Imaging of Vascular Regeneration with Dynamic Tissue Perfusion Measurement and High Spatial Resolution. Advanced Functional Materials, 2018, 28, 1803417.	7.8	107
40	Metabolic Fingerprinting on a Plasmonic Gold Chip for Mass Spectrometry Based <i>in Vitro</i> Diagnostics. ACS Central Science, 2018, 4, 223-229.	5.3	106
41	A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Research, 2020, 13, 1281-1294.	5.8	105
42	Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature, 2021, 596, 525-530.	13.7	103
43	Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chemical Science, 2017, 8, 3703-3711.	3.7	96
44	A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Research, 2019, 12, 273-279.	5.8	86
45	Developing a Bright NIRâ€II Fluorophore with Fast Renal Excretion and Its Application in Molecular Imaging of Immune Checkpoint PDâ€L1. Advanced Functional Materials, 2018, 28, 1804956.	7.8	85
46	High Performance, Multiplexed Lung Cancer Biomarker Detection on a Plasmonic Gold Chip. Advanced Functional Materials, 2016, 26, 7994-8002.	7.8	84
47	Rational Design of High Brightness NIR-II Organic Dyes with S-D-A-D-S Structure. Accounts of Materials Research, 2021, 2, 170-183.	5.9	84
48	Diagnosis and prognosis of myocardial infarction on a plasmonic chip. Nature Communications, 2020, 11, 1654.	5.8	83
49	Label-Free Electrochemical Sensor for CD44 by Ligand-Protein Interaction. Analytical Chemistry, 2019, 91, 7078-7085.	3.2	77
50	Ionic Liquid Analogs of AlCl ₃ with Urea Derivatives as Electrolytes for Aluminum Batteries. Advanced Functional Materials, 2020, 30, 1901928.	7.8	74
51	Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes. RSC Advances, 2019, 9, 11322-11330.	1.7	66
52	Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core–shell particles. Nano Research, 2018, 11, 68-79.	5.8	65
53	Detection and Inhibition of Bacteria on a Dualâ€Functional Silver Platform. Small, 2019, 15, e1803051.	5.2	54
54	Deep learning for in vivo near-infrared imaging. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	53

#	Article	IF	Citations
55	Magnetic "Squashing―of Circulating Tumor Cells on Plasmonic Substrates for Ultrasensitive NIR Fluorescence Detection. Small Methods, 2019, 3, 1800474.	4.6	52
56	In vivo NIR-II structured-illumination light-sheet microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	39
57	Defective Fe Metal–Organic Frameworks Enhance Metabolic Profiling for Highâ€Accuracy Diagnosis of Human Cancers. Advanced Materials, 2022, 34, e2201422.	11.1	39
58	Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10196-10201.	3.3	31
59	Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7089-7094.	3.3	30
60	High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123111119.	3.3	26
61	Combined immunomagnetic capture coupled with ultrasensitive plasmonic detection of circulating tumor cells in blood. Biomedical Microdevices, 2018, 20, 99.	1.4	10
62	Circulating Tumor Cells: Magnetic "Squashing―of Circulating Tumor Cells on Plasmonic Substrates for Ultrasensitive NIR Fluorescence Detection (Small Methods 2/2019). Small Methods, 2019, 3, 1970004.	4.6	5
63	Bacteria Inhibition: Detection and Inhibition of Bacteria on a Dual-Functional Silver Platform (Small) Tj ETQq $1\ 1\ 0$	0.784314	rgBŢ /Overlo
64	Recent Advances in Development of NIR-II Fluorescent Agents. , 2020, , 83-101.		4
65	A Label-Free Electrochemical Biosensor Based on Ligand-Receptor Interaction. , 2018, , .		1
66	Novel surface engineered micro-needles towards bio-analytical applications. , 2016, , .		0
67	Lipidomics study using novel plasmonic nanoshells. , 2017, , .		0
68	Polymer-metal composites for sensitive detection of metabolites by mass spectrometry. , 2017, , .		0
69	Hybrid Core-shell Particles for Metabolite Detection by Laser Desorption/ionization Mass Spectrometry., 2018,,.		0
70	Size-selected Core-shell Nanoalloys for Laser Desorption/ionization Detection of Small Metabolites. , 2018, , .		0
71	Nanoparticles as Co-matrix for Sensitive Detection of Nucleic Acids by Mass Spectrometry., 2018,,.		0