
## Cheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8731243/publications.pdf Version: 2024-02-01



CHENC CHEN

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multi-dimensional hybrid flexible films promote uniform lithium deposition and mitigate volume change as lithium metal anodes. Journal of Energy Chemistry, 2022, 65, 583-591.                                                                            | 7.1 | 6         |
| 2  | Zn-doping Effects of Na-rich Na3+xV2-xZnx(PO4)3/C cathodes for Na-Ion Batteries: Lattice distortion<br>induced by doping site and enhanced electrochemical performance. Journal of Colloid and Interface<br>Science, 2022, 616, 246-252.                  | 5.0 | 7         |
| 3  | Na-K liquid alloy: A review on wettability enhancement and ionic carrier selection mechanism. Chinese<br>Chemical Letters, 2021, 32, 983-989.                                                                                                             | 4.8 | 8         |
| 4  | Rational design and controllable synthesis of polymer aerogel-based single-atom catalysts with high<br>loading. Materials Advances, 2021, 2, 6885-6900.                                                                                                   | 2.6 | 3         |
| 5  | Dual-heterostructures decorated interweaved carbon nanofibers sulfur host for high performance<br>lithium-sulfur batteries. Chemical Engineering Journal, 2021, 418, 129388.                                                                              | 6.6 | 27        |
| 6  | A high specific surface area porous carbon skeleton derived from MOF for high-performance<br>Lithium-ion capacitors. IOP Conference Series: Earth and Environmental Science, 2021, 844, 012002.                                                           | 0.2 | 1         |
| 7  | Bimetallic composite induced ultra-stable solid electrolyte interphase for dendrite-free lithium metal anode. Journal of Colloid and Interface Science, 2021, 599, 819-827.                                                                               | 5.0 | 15        |
| 8  | An instantaneous metal organic framework to prepare ultra-high pore volume porous carbon for lithium ion capacitors. Applied Surface Science, 2021, 565, 150528.                                                                                          | 3.1 | 9         |
| 9  | High loading of NiFe active sites on a melamine formaldehyde carbon-based aerogel towards efficient<br>bi-functional electrocatalysis for water splitting. Sustainable Energy and Fuels, 2021, 5, 4973-4980.                                              | 2.5 | 4         |
| 10 | Understanding of the Mechanism Enables Controllable Chemical Prelithiation of Anode Materials for<br>Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 53996-54004.                                                                    | 4.0 | 12        |
| 11 | Activation-free N-doped porous carbon to enhance surface-driven K storage vs intercalation dominated Na storage. Applied Surface Science, 2020, 506, 144909.                                                                                              | 3.1 | 13        |
| 12 | Zinc Oxide Quantum Dots Embedded Porous Carbon Nanosheets for High-Capacity and Ultrastable<br>Lithium-Ion Battery Anodes. Cell Reports Physical Science, 2020, 1, 100186.                                                                                | 2.8 | 8         |
| 13 | Communication—Phosphate K(Mo <sub>2</sub> PO <sub>6</sub> )(P <sub>2</sub> O <sub>7</sub> ) as a Novel Cathode Material for Potassium Ion Batteries: Structure and Electrochemical Properties. Journal of the Electrochemical Society, 2020, 167, 110517. | 1.3 | 3         |
| 14 | Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes. Journal of Power Sources, 2020, 471, 228455.                                                                                     | 4.0 | 17        |
| 15 | SnO2 nano-crystals anchored on N-doped porous carbon with enhanced lithium storage properties.<br>Applied Surface Science, 2020, 515, 145902.                                                                                                             | 3.1 | 26        |
| 16 | Excellent Electrochemical Performance of Potassium Ion Capacitor Achieved by a High Nitrogen Doped<br>Activated Carbon. Journal of the Electrochemical Society, 2020, 167, 050506.                                                                        | 1.3 | 17        |
| 17 | Controllable morphologies and electrochemical performances of self-assembled nano-honeycomb<br>WS2 anodes modified by graphene doping for lithium and sodium ion batteries. Carbon, 2019, 142,<br>697-706.                                                | 5.4 | 76        |
| 18 | Potassium Ion Storage: Direct Structure–Performance Comparison of Allâ€Carbon Potassium and<br>Sodium Ion Capacitors (Adv. Sci. 12/2019). Advanced Science, 2019, 6, 1970075.                                                                             | 5.6 | 3         |

CHENG CHEN

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cellulose-Hydrogel-Derived Self-Activated Carbon/SnO <sub>2</sub> Nanocomposites for<br>High-Performance Lithium Storage. ACS Applied Energy Materials, 2019, 2, 5171-5182.                         | 2.5 | 29        |
| 20 | Insights into pseudographite-structured hard carbon with stabilized performance for high energy<br>K-ion storage. Journal of Power Sources, 2019, 444, 227310.                                      | 4.0 | 50        |
| 21 | Optimized sulfur-loading in nitrogen-doped porous carbon for high-capacity cathode of<br>lithium–sulfur batteries. Applied Surface Science, 2019, 487, 784-792.                                     | 3.1 | 29        |
| 22 | Direct Structure–Performance Comparison of All arbon Potassium and Sodium Ion Capacitors.<br>Advanced Science, 2019, 6, 1802272.                                                                    | 5.6 | 98        |
| 23 | Hydrophilic binder interface interactions inducing inadhesion and capacity collapse in sodium-ion battery. Journal of Power Sources, 2019, 427, 62-69.                                              | 4.0 | 13        |
| 24 | Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in<br>Sodium Ion Battery. Electronic Materials Letters, 2019, 15, 428-436.                                  | 1.0 | 13        |
| 25 | MOF-derived manganese monoxide nanosheet-assembled microflowers for enhanced lithium-ion storage. Nanoscale, 2019, 11, 10763-10773.                                                                 | 2.8 | 29        |
| 26 | Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries.<br>Journal of Colloid and Interface Science, 2019, 538, 267-276.                                 | 5.0 | 63        |
| 27 | Uniform Co <sub>3</sub> V <sub>2</sub> O <sub>8</sub> microspheres <i>via</i> controllable assembly for high-performance lithium-ion battery anodes. New Journal of Chemistry, 2018, 42, 4881-4886. | 1.4 | 9         |
| 28 | Systematic comparison of hollow and solid Co 3 V 2 O 8 micro-pencils as advanced anode materials for lithium ion batteries. Electrochimica Acta, 2018, 264, 358-366.                                | 2.6 | 49        |
| 29 | Graphene Oxideâ€Template Controlled Cuboidâ€Shaped Highâ€Capacity VS <sub>4</sub> Nanoparticles as<br>Anode for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1801806.            | 7.8 | 125       |
| 30 | High rate capability and long cycling life of graphene-coated silicon composite anodes for lithium ion batteries. Electrochimica Acta, 2017, 256, 259-266.                                          | 2.6 | 58        |
| 31 | Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries.<br>RSC Advances, 2017, 7, 48286-48293.                                                              | 1.7 | 26        |
| 32 | High Rate and Long Cycle Life of a CNT/rGO/Si Nanoparticle Composite Anode for Lithiumâ€lon Batteries.<br>Particle and Particle Systems Characterization, 2017, 34, 1700141.                        | 1.2 | 38        |
| 33 | An in situ iodine-doped graphene/silicon composite paper as a highly conductive and self-supporting electrode for lithium-ion batteries. RSC Advances, 2017, 7, 38639-38646.                        | 1.7 | 12        |
| 34 | Facile and controllable synthesis of solid Co <sub>3</sub> V <sub>2</sub> O <sub>8</sub><br>micro-pencils as a highly efficient anode for Li-ion batteries. RSC Advances, 2017, 7, 24418-24424.     | 1.7 | 16        |