Charlotte E Egan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8730992/publications.pdf

Version: 2024-02-01

27 papers 2,289 citations

257101 24 h-index 26 g-index

27 all docs

 $\begin{array}{c} 27 \\ \text{docs citations} \end{array}$

times ranked

27

3680 citing authors

#	Article	IF	CITATIONS
1	Retinoic Acid Improves Incidence and Severity of Necrotizing Enterocolitis by Lymphocyte Balance Restitution and Repopulation of LGR5+ Intestinal Stem Cells. Shock, 2017, 47, 22-32.	1.0	35
2	Peroxisome Proliferator-activated Receptor- \hat{l}^3 Coactivator $1-\hat{l}\pm$ (PGC1 $\hat{l}\pm$) Protects against Experimental Murine Colitis. Journal of Biological Chemistry, 2016, 291, 10184-10200.	1.6	65
3	Intestinal Epithelial TLR-4 Activation Is Required for the Development of Acute Lung Injury after Trauma/Hemorrhagic Shock via the Release of HMGB1 from the Gut. Journal of Immunology, 2015, 194, 4931-4939.	0.4	64
4	Toll-like receptor 4–mediated lymphocyte influx induces neonatal necrotizing enterocolitis. Journal of Clinical Investigation, 2015, 126, 495-508.	3.9	185
5	Toll-like Receptor 4-mediated Endoplasmic Reticulum Stress in Intestinal Crypts Induces Necrotizing Enterocolitis. Journal of Biological Chemistry, 2014, 289, 9584-9599.	1.6	141
6	CXCR3-Dependent CD4+ T Cells Are Required to Activate Inflammatory Monocytes for Defense against Intestinal Infection. PLoS Pathogens, 2013, 9, e1003706.	2.1	51
7	Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS–NO–nitrite signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9451-9456.	3.3	186
8	CCR2 and CD44 Promote Inflammatory Cell Recruitment during Fatty Liver Formation in a Lithogenic Diet Fed Mouse Model. PLoS ONE, 2013, 8, e65247.	1.1	26
9	Intestinal Intraepithelial Lymphocyte-Enterocyte Crosstalk Regulates Production of Bactericidal Angiogenin 4 by Paneth Cells upon Microbial Challenge. PLoS ONE, 2013, 8, e84553.	1.1	54
10	Amniotic fluid inhibits Toll-like receptor 4 signaling in the fetal and neonatal intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11330-11335.	3.3	151
11	Toll-like Receptor 4 Is Expressed on Intestinal Stem Cells and Regulates Their Proliferation and Apoptosis via the p53 Up-regulated Modulator of Apoptosis. Journal of Biological Chemistry, 2012, 287, 37296-37308.	1.6	182
12	CD73-generated adenosine facilitates <i>Toxoplasma gondii</i> differentiation to long-lived tissue cysts in the central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16312-16317.	3.3	57
13	Trefoil Factor 2 Negatively Regulates Type 1 Immunity against <i>Toxoplasma gondii</i> Immunology, 2012, 189, 3078-3084.	0.4	23
14	Insights into inflammatory bowel disease using <i>Toxoplasma gondii</i> as an infectious trigger. Immunology and Cell Biology, 2012, 90, 668-675.	1.0	64
15	Inflammation Drives Dysbiosis and Bacterial Invasion in Murine Models of Ileal Crohn's Disease. PLoS ONE, 2012, 7, e41594.	1.1	176
16	CCR2 Deletion Completely Eliminates and CD44 Deletion Partially Abrogates the Development of Hepatitis in a Mouse Model of NAFLD/NASH. Gastroenterology, 2011, 140, S-118.	0.6	0
17	Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. International Immunology, 2011, 23, 317-326.	1.8	229
18	Synergy between intraepithelial lymphocytes and lamina propria T cells drives intestinal inflammation during infection. Mucosal Immunology, 2011, 4, 658-670.	2.7	34

#	Article	IF	CITATION
19	CCR2-dependent intraepithelial lymphocytes mediate inflammatory gut pathology during Toxoplasma gondii infection. Mucosal Immunology, 2009, 2, 527-535.	2.7	43
20	<i>Toxoplasma gondii</i> Prevents Chromatin Remodeling Initiated by TLR-Triggered Macrophage Activation. Journal of Immunology, 2009, 182, 489-497.	0.4	66
21	Functional aspects of Toll-like receptor/MyD88 signalling during protozoan infection: focus on <i>Toxoplasma gondii</i> . Clinical and Experimental Immunology, 2009, 156, 17-24.	1.1	48
22	Understanding the multiple functions of Gr-1+ cell subpopulations during microbial infection. Immunologic Research, 2008, 40, 35-48.	1.3	65
23	TLR Adaptor MyD88 Is Essential for Pathogen Control during Oral <i>Toxoplasma gondii</i> Infection but Not Adaptive Immunity Induced by a Vaccine Strain of the Parasite. Journal of Immunology, 2008, 181, 3464-3473.	0.4	97
24	Mouse Neutrophils Require JNK2 MAPK for <i>Toxoplasma gondii</i> li>lnduced IL-12p40 and CCL2/MCP-1 Release. Journal of Immunology, 2007, 179, 3570-3577.	0.4	29
25	Intraepithelial $\hat{I}^3\hat{I}$ + Lymphocytes Maintain the Integrity of Intestinal Epithelial Tight Junctions in Response to Infection. Gastroenterology, 2006, 131, 818-829.	0.6	127
26	A Requirement for the $V\hat{I}^31+$ Subset of Peripheral $\hat{I}^3\hat{I}'T$ Cells in the Control of the Systemic Growth of <i>Toxoplasma gondii</i> and Infection-Induced Pathology. Journal of Immunology, 2005, 175, 8191-8199.	0.4	45
27	Delineation of the Function of a Major γδT Cell Subset during Infection. Journal of Immunology, 2005, 175, 1741-1750.	0.4	46