Silke Leimkühler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8730864/publications.pdf

Version: 2024-02-01

124 papers 5,073 citations

42 h-index 64 g-index

126 all docs

126 docs citations

times ranked

126

3941 citing authors

#	Article	IF	CITATIONS
1	Involvement of aldehyde oxidase in the metabolism of aromatic and aliphatic aldehyde-odorants in the mouse olfactory epithelium. Archives of Biochemistry and Biophysics, 2022, 715, 109099.	1.4	3
2	The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes. Molecules, 2022, 27, 2993.	1.7	4
3	Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chemical Reviews, 2022, 122, 11900-11973.	23.0	70
4	Transition Metals in Catalysis: The Functional Relationship of Fe–S Clusters and Molybdenum or Tungsten Cofactor-Containing Enzyme Systems. Inorganics, 2021, 9, 6.	1.2	0
5	TusA Is a Versatile Protein That Links Translation Efficiency to Cell Division in Escherichia coli. Journal of Bacteriology, 2021, 203, .	1.0	4
6	Electrochemical Trimethylamine N-Oxide Biosensor with Enzyme-Based Oxygen-Scavenging Membrane for Long-Term Operation under Ambient Air. Biosensors, $2021,11,98.$	2.3	14
7	A-Type Carrier Proteins Are Involved in [4Fe-4S] Cluster Insertion into the Radical <i>S</i> -Adenosylmethionine Protein MoaA for the Synthesis of Active Molybdoenzymes. Journal of Bacteriology, 2021, 203, e0008621.	1.0	5
8	The Inactivation of Human Aldehyde Oxidase 1 by Hydrogen Peroxide and Superoxide. Drug Metabolism and Disposition, 2021, 49, 729-735.	1.7	7
9	Interrogating the Inhibition Mechanisms of Human Aldehyde Oxidase by X-ray Crystallography and NMR Spectroscopy: The Raloxifene Case. Journal of Medicinal Chemistry, 2021, 64, 13025-13037.	2.9	5
10	Anion Binding and Oxidative Modification at the Molybdenum Cofactor of Formate Dehydrogenase from <i>Rhodobacter capsulatus</i> Studied by X-ray Absorption Spectroscopy. Inorganic Chemistry, 2020, 59, 214-225.	1.9	20
11	The Requirement of Inorganic Fe-S Clusters for the Biosynthesis of the Organometallic Molybdenum Cofactor. Inorganics, 2020, 8, 43.	1.2	6
12	The biosynthesis of the molybdenum cofactors in <scp><i>Escherichia coli</i></scp> . Environmental Microbiology, 2020, 22, 2007-2026.	1.8	27
13	Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. Journal of Biological Chemistry, 2020, 295, 5377-5389.	1.6	39
14	Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase. Nature Communications, 2020, 11, 1912.	5 . 8	48
15	Shewanella decolorationis LDS1 Chromate Resistance. Applied and Environmental Microbiology, 2019, 85, .	1.4	13
16	The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria. Metallomics, 2019, 11, 1602-1624.	1.0	18
17	Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli. Journal of Bacteriology, 2019, 201, .	1.0	10
18	Three-Dimensional Sulfite Oxidase Bioanodes Based on Graphene Functionalized Carbon Paper for Sulfite/O ₂ Biofuel Cells. ACS Catalysis, 2019, 9, 6543-6554.	5 . 5	34

#	Article	IF	CITATIONS
19	Human aldehyde oxidase (hAOX 1): structure determination of the Mocoâ€free form of the natural variant G1269R and biophysical studies of single nucleotide polymorphisms. FEBS Open Bio, 2019, 9, 925-934.	1.0	9
20	The ABCB7-Like Transporter PexA in Rhodobacter capsulatus Is Involved in the Translocation of Reactive Sulfur Species. Frontiers in Microbiology, 2019, 10, 406.	1.5	4
21	Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in <i>Escherichia coli</i> li>. Biochemistry, 2019, 58, 2228-2242.	1.2	7
22	Analysis of the Cellular Roles of MOCS3 Identifies a MOCS3-Independent Localization of NFS1 at the Tips of the Centrosome. Biochemistry, 2019, 58, 1786-1798.	1.2	7
23	Trimethylamine <i>N</i> â€Oxide Electrochemical Biosensor with a Chimeric Enzyme. ChemElectroChem, 2019, 6, 1732-1737.	1.7	14
24	Reconstitution of Molybdoenzymes with Bis-Molybdopterin Guanine Dinucleotide Cofactors. Methods in Molecular Biology, 2019, 1876, 141-152.	0.4	2
25	Functional Studies on <i>Oligotropha carboxidovorans</i> Molybdenum–Copper CO Dehydrogenase Produced in <i>Escherichia coli</i> Biochemistry, 2018, 57, 2889-2901.	1.2	16
26	Modulating the Molybdenum Coordination Sphere of <i>Escherichia coli</i> Trimethylamine <i>N</i> -Oxide Reductase. Biochemistry, 2018, 57, 1130-1143.	1.2	21
27	Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics. Coordination Chemistry Reviews, 2018, 368, 35-59.	9.5	21
28	Same but different: Comparison of two system-specific molecular chaperones for the maturation of formate dehydrogenases. PLoS ONE, 2018, 13, e0201935.	1.1	10
29	Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria. Scientific Reports, 2018, 8, 13576.	1.6	15
30	The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia. Nature Communications, 2018, 9, 3514.	5.8	40
31	Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Frontiers in Physiology, 2018, 9, 50.	1.3	33
32	Direct comparison of the four aldehyde oxidase enzymes present in mouse gives insight into their substrate specificities. PLoS ONE, 2018, 13, e0191819.	1.1	11
33	Thirdâ€generation Sulfite Biosensor Based on Sulfite Oxidase Immobilized on Aminopropyltriethoxysilane Modified Indium Tin Oxide. Electroanalysis, 2017, 29, 110-115.	1.5	13
34	The N-Terminus of Iron–Sulfur Cluster Assembly Factor ISD11 Is Crucial for Subcellular Targeting and Interaction with <scp>l</scp> -Cysteine Desulfurase NFS1. Biochemistry, 2017, 56, 1797-1808.	1.2	21
35	Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy. Inorganic Chemistry, 2017, 56, 2165-2176.	1.9	7
36	Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics. Current Opinion in Chemical Biology, 2017, 37, 39-47.	2.8	33

3

#	Article	IF	Citations
37	Vibrational Probes of Molybdenum Cofactor–Protein Interactions in Xanthine Dehydrogenase. Inorganic Chemistry, 2017, 56, 6830-6837.	1.9	12
38	The Role of SufS Is Restricted to Fe–S Cluster Biosynthesis in <i>Escherichia coli</i> . Biochemistry, 2017, 56, 1987-2000.	1.2	19
39	Shared function and moonlighting proteins in molybdenum cofactor biosynthesis. Biological Chemistry, 2017, 398, 1009-1026.	1,2	26
40	ecoAO: A Simple System for the Study of Human Aldehyde Oxidases Role in Drug Metabolism. ACS Omega, 2017, 2, 4820-4827.	1.6	9
41	Transient Catalytic Voltammetry of Sulfite Oxidase Reveals Rate Limiting Conformational Changes. Journal of the American Chemical Society, 2017, 139, 11559-11567.	6.6	16
42	Functional Complementation Studies Reveal Different Interaction Partners of <i>Escherichia coli</i> lscS and Human NFS1. Biochemistry, 2017, 56, 4592-4605.	1,2	9
43	Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes. Biomolecules, 2017, 7, 5.	1.8	53
44	A single nucleotide polymorphism causes enhanced radical oxygen species production by human aldehyde oxidase. PLoS ONE, 2017, 12, e0182061.	1.1	21
45	The 1,6,7,12â€Tetraazaperylene Bridging Ligand as an Electron Reservoir and Its Disulfonato Derivative as Redox Mediator in an Enzyme–Electrode Process. Chemistry - A European Journal, 2017, 23, 15583-15587.	1.7	4
46	Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse. Drug Metabolism and Disposition, 2017, 45, 947-955.	1.7	15
47	Role of Conductive Nanoparticles in the Direct Unmediated Bioelectrocatalysis of Immobilized Sulfite Oxidase. Electroanalysis, 2016, 28, 2303-2310.	1.5	10
48	Optimization of the Expression of Human Aldehyde Oxidase for Investigations of Single-Nucleotide Polymorphisms. Drug Metabolism and Disposition, 2016, 44, 1277-1285.	1.7	34
49	The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C–H Bond Cleavage and Oxygen Atom Transfer Reactions. Biochemistry, 2016, 55, 2381-2389.	1.2	51
50	The <i>Escherichia coli</i> Periplasmic Aldehyde Oxidoreductase Is an Exceptional Member of the Xanthine Oxidase Family of Molybdoenzymes. ACS Chemical Biology, 2016, 11, 2923-2935.	1.6	26
51	Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers. Bioelectrochemistry, 2016, 109, 24-30.	2.4	19
52	Structure and function of mammalian aldehyde oxidases. Archives of Toxicology, 2016, 90, 753-780.	1.9	95
53	Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiology Reviews, 2016, 40, 1-18.	3.9	136
54	The Eukaryotic-Specific ISD11 Is a Complex-Orphan Protein with Ability to Bind the Prokaryotic IscS. PLoS ONE, 2016, 11, e0157895.	1.1	6

#	Article	IF	CITATIONS
55	Galactose Oxidase Variants for the Oxidation of Amino Alcohols in Enzyme Cascade Synthesis. ChemCatChem, 2015, 7, 2313-2317.	1.8	49
56	The Electrically Wired Molybdenum Domain of Human Sulfite Oxidase is Bioelectrocatalytically Active. European Journal of Inorganic Chemistry, 2015, 2015, 3526-3531.	1.0	5
57	The biosynthesis of the molybdenum cofactors. Journal of Biological Inorganic Chemistry, 2015, 20, 337-347.	1.1	114
58	Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem. Green Chemistry, 2015, 17, 3271-3275.	4.6	124
59	Sulfido and Cysteine Ligation Changes at the Molybdenum Cofactor during Substrate Conversion by Formate Dehydrogenase (FDH) from <i>Rhodobacter capsulatus</i> . Inorganic Chemistry, 2015, 54, 3260-3271.	1.9	57
60	Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nature Chemical Biology, 2015, 11, 779-783.	3.9	85
61	Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21487-21494.	4.0	30
62	Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1090-1100.	1.1	77
63	The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1335-1349.	1.9	28
64	The Biosynthesis of the Molybdenum Cofactor in <i>Escherichia coli</i> and Its Connection to FeS Cluster Assembly and the Thiolation of tRNA. Advances in Biology, 2014, 2014, 1-21.	1.2	15
65	Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA. Biosensors, 2014, 4, 403-421.	2.3	22
66	Characterization and Interaction Studies of Two Isoforms of the Dual Localized 3-Mercaptopyruvate Sulfurtransferase TUM1 from Humans. Journal of Biological Chemistry, 2014, 289, 34543-34556.	1.6	62
67	The four aldehyde oxidases of <i>Drosophila melanogaster</i> have different gene expression patterns and enzyme substrate specificities. Journal of Experimental Biology, 2014, 217, 2201-11.	0.8	28
68	Catalytic bio–chemo and bio–bio tandem oxidation reactions for amide and carboxylic acid synthesis. Green Chemistry, 2014, 16, 4524-4529.	4.6	65
69	Pyranopterin Dithiolene Distortions Relevant to Electron Transfer in Xanthine Oxidase/Dehydrogenase. Inorganic Chemistry, 2014, 53, 7077-7079.	1.9	21
70	The chaperone FdsC for <i>Rhodobacter capsulatus</i> formate dehydrogenase binds the bisâ€molybdopterin guanine dinucleotide cofactor. FEBS Letters, 2014, 588, 531-537.	1.3	26
71	Biochemical, Stabilization and Crystallization Studies on a Molecular Chaperone (PaoD) Involved in the Maturation of Molybdoenzymes. PLoS ONE, 2014, 9, e87295.	1.1	10
72	Mutations in LYRM4, encoding iron–sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes. Human Molecular Genetics, 2013, 22, 4460-4473.	1.4	97

#	Article	IF	CITATIONS
73	Analysis of the interaction of the molybdenum hydroxylase PaoABC from Escherichia coli with positively and negatively charged metal complexes. Electrochemistry Communications, 2013, 37, 5-7.	2.3	9
74	The oxygenâ€tolerant and <scp>NAD</scp> ⁺ â€dependent formate dehydrogenase from <i>RhodobacterÂcapsulatus</i> is able to catalyze the reduction of <scp>CO</scp> ₂ to formate. FEBS Journal, 2013, 280, 6083-6096.	2.2	126
75	Effect of Exchange of the Cysteine Molybdenum Ligand with Selenocysteine on the Structure and Function of the Active Site in Human Sulfite Oxidase. Biochemistry, 2013, 52, 8295-8303.	1.2	21
76	Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1086-1101.	0.5	142
77	A Biosensor for Aromatic Aldehydes Comprising the Mediator Dependent PaoABCâ€Aldehyde Oxidoreductase. Electroanalysis, 2013, 25, 101-108.	1.5	22
78	The Sulfur Carrier Protein TusA Has a Pleiotropic Role in Escherichia coli That Also Affects Molybdenum Cofactor Biosynthesis*. Journal of Biological Chemistry, 2013, 288, 5426-5442.	1.6	54
79	Identification of a Bis-molybdopterin Intermediate in Molybdenum Cofactor Biosynthesis in Escherichia coli. Journal of Biological Chemistry, 2013, 288, 29736-29745.	1.6	43
80	Identification of Crucial Amino Acids in Mouse Aldehyde Oxidase 3 That Determine Substrate Specificity. PLoS ONE, 2013, 8, e82285.	1.1	20
81	The L-Cysteine Desulfurase NFS1 Is Localized in the Cytosol where it Provides the Sulfur for Molybdenum Cofactor Biosynthesis in Humans. PLoS ONE, 2013, 8, e60869.	1.1	48
82	The Impact of Single Nucleotide Polymorphisms on Human Aldehyde Oxidase. Drug Metabolism and Disposition, 2012, 40, 856-864.	1.7	88
83	The First Mammalian Aldehyde Oxidase Crystal Structure. Journal of Biological Chemistry, 2012, 287, 40690-40702.	1.6	83
84	Dual Role of the Molybdenum Cofactor Biosynthesis Protein MOCS3 in tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Humans. Journal of Biological Chemistry, 2012, 287, 17297-17307.	1.6	42
85	Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode. Bioelectrochemistry, 2012, 87, 33-41.	2.4	51
86	Thin films of substituted polyanilines: interactions with biomolecular systems. Soft Matter, 2012, 8, 3848.	1.2	13
87	Semimetallic TiO2 nanotubes: new interfaces for bioelectrochemical enzymatic catalysis. Journal of Materials Chemistry, 2012, 22, 4615.	6.7	28
88	Novel Frataxin Isoforms May Contribute to the Pathological Mechanism of Friedreich Ataxia. PLoS ONE, 2012, 7, e47847.	1.1	41
89	Structure of the Molybdenum Site in YedY, a Sulfite Oxidase Homologue from <i>Escherichia coli</i> Inorganic Chemistry, 2011, 50, 741-748.	1.9	42
90	A Crystallographic and Mo K-Edge XAS Study of Molybdenum Oxo Bis-, Mono-, and Non-Dithiolene Complexes - First-Sphere Coordination Geometry and Noninnocence of Ligands. European Journal of Inorganic Chemistry, 2011, 2011, 4387-4399.	1.0	20

#	Article	IF	CITATIONS
91	The history of the discovery of the molybdenum cofactor and novel aspects of its biosynthesis in bacteria. Coordination Chemistry Reviews, 2011, 255, 1129-1144.	9.5	116
92	Characterization and Crystallization of Mouse Aldehyde Oxidase 3: From Mouse Liver to <i>Escherichia coli</i> Heterologous Protein Expression. Drug Metabolism and Disposition, 2011, 39, 1939-1945.	1.7	29
93	The Role of System-Specific Molecular Chaperones in the Maturation of Molybdoenzymes in Bacteria. Biochemistry Research International, 2011, 2011, 1-13.	1.5	28
94	Molybdopterin Dinucleotide Biosynthesis in Escherichia coli. Journal of Biological Chemistry, 2011, 286, 1400-1408.	1.6	25
95	The Identification of a Novel Protein Involved in Molybdenum Cofactor Biosynthesis in Escherichia coli. Journal of Biological Chemistry, 2011, 286, 35801-35812.	1.6	46
96	Sulfite biosensor based on osmium redox polymer wired sulfite oxidase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 314-319.	2.3	31
97	IscS Functions as a Primary Sulfur-donating Enzyme by Interacting Specifically with MoeB and MoaD in the Biosynthesis of Molybdopterin in Escherichia coli. Journal of Biological Chemistry, 2010, 285, 2302-2308.	1.6	57
98	Site Directed Mutagenesis of Amino Acid Residues at the Active Site of Mouse Aldehyde Oxidase AOX1. PLoS ONE, 2009, 4, e5348.	1.1	40
99	MocA Is a Specific Cytidylyltransferase Involved in Molybdopterin Cytosine Dinucleotide Biosynthesis in Escherichia coli. Journal of Biological Chemistry, 2009, 284, 21891-21898.	1.6	49
100	Specific Interactions between Four Molybdenum-Binding Proteins Contribute to Mo-Dependent Gene Regulation in <i>Rhodobacter capsulatus</i>). Journal of Bacteriology, 2009, 191, 5205-5215.	1.0	13
101	Mechanism of Substrate and Inhibitor Binding of Rhodobacter capsulatus Xanthine Dehydrogenase. Journal of Biological Chemistry, 2009, 284, 8768-8776.	1.6	40
102	A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdoâ€flavoenzyme from ⟨i⟩Escherichia coli⟨/i⟩. FEBS Journal, 2009, 276, 2762-2774.	2.2	71
103	Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in <i>Escherichiaâ€∫coli</i>). FEBS Journal, 2008, 275, 5678-5689.	2.2	41
104	Dedicated Metallochaperone Connects Apoenzyme and Molybdenum Cofactor Biosynthesis Components. Journal of Biological Chemistry, 2008, 283, 21433-21440.	1.6	50
105	Electrocatalytically functional multilayer assembly of sulfite oxidase and cytochrome c. Soft Matter, 2008, 4, 972.	1.2	43
106	The Sulfurtransferase Activity of Uba4 Presents a Link between Ubiquitin-like Protein Conjugation and Activation of Sulfur Carrier Proteins. Biochemistry, 2008, 47, 6479-6489.	1.2	83
107	The Mechanism of Assembly and Cofactor Insertion into Rhodobacter capsulatus Xanthine Dehydrogenase. Journal of Biological Chemistry, 2008, 283, 16602-16611.	1.6	38
108	A Novel Role for Human Nfs1 in the Cytoplasm. Journal of Biological Chemistry, 2008, 283, 25178-25185.	1.6	111

#	Article	IF	CITATIONS
109	Transfer of the Molybdenum Cofactor Synthesized by Rhodobacter capsulatus MoeA to XdhC and MobA. Journal of Biological Chemistry, 2007, 282, 28493-28500.	1.6	35
110	Identification of a <i>Rhodobacter capsulatus</i> <scp>I</scp> -Cysteine Desulfurase That Sulfurates the Molybdenum Cofactor When Bound to XdhC and before Its Insertion into Xanthine Dehydrogenase. Biochemistry, 2007, 46, 9586-9595.	1.2	52
111	Role of the C-Terminal Gly-Gly Motif ofEscherichia ColiMoaD, a Molybdenum Cofactor Biosynthesis Protein with a Ubiquitin Foldâ€. Biochemistry, 2007, 46, 909-916.	1.2	37
112	Rhodobacter capsulatus XdhC Is Involved in Molybdenum Cofactor Binding and Insertion into Xanthine Dehydrogenase. Journal of Biological Chemistry, 2006, 281, 15701-15708.	1.6	59
113	Ten novel mutations in the molybdenum cofactor genes MOCS1 and MOCS2 and in vitro characterization of a MOCS2 mutation that abolishes the binding ability of molybdopterin synthase. Human Genetics, 2005, 117, 565-570.	1.8	29
114	Molybdenum Cofactor Biosynthesis in Humans: Identification of a Persulfide Group in the Rhodanese-like Domain of MOCS3 by Mass Spectrometryâ€. Biochemistry, 2005, 44, 7912-7920.	1.2	75
115	The Role of Active Site Glutamate Residues in Catalysis of Rhodobacter capsulatus Xanthine Dehydrogenase. Journal of Biological Chemistry, 2004, 279, 40437-40444.	1.6	67
116	Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5946-5951.	3.3	124
117	Mechanistic Studies of Human Molybdopterin Synthase Reaction and Characterization of Mutants Identified in Group B Patients of Molybdenum Cofactor Deficiency. Journal of Biological Chemistry, 2003, 278, 26127-26134.	1.6	52
118	Recombinant Rhodobacter capsulatus Xanthine Dehydrogenase, a Useful Model System for the Characterization of Protein Variants Leading to Xanthinuria I in Humans. Journal of Biological Chemistry, 2003, 278, 20802-20811.	1.6	57
119	Crystal Structures of the Active and Alloxanthine-Inhibited Forms of Xanthine Dehydrogenase from Rhodobacter capsulatus. Structure, 2002, 10, 115-125.	1.6	193
120	In Vitro Incorporation of Nascent Molybdenum Cofactor into Human Sulfite Oxidase. Journal of Biological Chemistry, 2001, 276, 1837-1844.	1.6	52
121	A Sulfurtransferase Is Required in the Transfer of Cysteine Sulfur in the in Vitro Synthesis of Molybdopterin from Precursor Z in Escherichia coli. Journal of Biological Chemistry, 2001, 276, 22024-22031.	1.6	113
122	Characterization of Escherichia coli MoeB and Its Involvement in the Activation of Molybdopterin Synthase for the Biosynthesis of the Molybdenum Cofactor. Journal of Biological Chemistry, 2001, 276, 34695-34701.	1.6	117
123	Molybdate-dependent expression of dimethylsulfoxide reductase inRhodobacter capsulatus. FEMS Microbiology Letters, 2000, 190, 203-208.	0.7	18
124	Xanthine dehydrogenase from the phototrophic purple bacteriumRhodobacter capsulatusis more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Molecular Microbiology, 1998, 27, 853-869.	1.2	101