
Dipak K Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8730753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transgenerational inheritance of fetal alcohol effects on proopiomelanocortin gene expression and methylation, cortisol response to stress, and anxiety-like behaviors in offspring for three generations in rats: Evidence for male germline transmission. PLoS ONE, 2022, 17, e0263340.	1.1	7
2	Beta 2 adrenergic receptor and mu opioid receptor interact to potentiate the aggressiveness of human breast cancer cell by activating the glycogen synthase kinase 3 signaling. Breast Cancer Research, 2022, 24, 33.	2.2	7
3	Preconception Alcohol Exposure Increases the Susceptibility to Diabetes in the Offspring. Endocrinology, 2021, 162, .	1.4	9
4	Sex-Determining Region Y Controls the Effects of Fetal Alcohol Exposure on Proopiomelanocortin Gene Expression. Frontiers in Neuroscience, 2021, 15, 608102.	1.4	1
5	Beta 2 Adrenergic Receptor Antagonist Propranolol and Opioidergic Receptor Antagonist Naltrexone Produce Synergistic Effects on Breast Cancer Growth Prevention by Acting on Cancer Cells and Immune Environment in a Preclinical Model of Breast Cancer. Cancers, 2021, 13, 4858.	1.7	9
6	Fetal Alcohol Exposure Impairs the Function of Hypothalamic Proopiomelanocortin Neurons via a Circadian Mechanism. , 2021, , 125-133.		0
7	Alcohol Increases Exosome Release from Microglia to Promote Complement C1q-Induced Cellular Death of Proopiomelanocortin Neurons in the Hypothalamus in a Rat Model of Fetal Alcohol Spectrum Disorders. Journal of Neuroscience, 2020, 40, 7965-7979.	1.7	31
8	Transgenerational inheritance of fetal alcohol exposure adverse effects on immune gene interferon-Ï'. Clinical Epigenetics, 2020, 12, 70.	1.8	11
9	Persistent Changes in Stressâ€Regulatory Genes in Pregnant Women or Children Exposed Prenatally to Alcohol. Alcoholism: Clinical and Experimental Research, 2019, 43, 1887-1897.	1.4	31
10	Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death and Disease, 2019, 10, 447.	2.7	16
11	Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: possible epigenetic mechanism. Neuropsychopharmacology, 2019, 44, 1579-1588.	2.8	43
12	Hypermethylation of Proopiomelanocortin and Period 2 Genes in Blood Are Associated with Greater Subjective and Behavioral Motivation for Alcohol in Humans. Alcoholism: Clinical and Experimental Research, 2019, 43, 212-220.	1.4	15
13	Prenatal alcohol exposure increases the susceptibility to develop aggressive prolactinomas in the pituitary gland. Scientific Reports, 2018, 8, 7720.	1.6	10
14	A combined opiate agonist and antagonist treatment reduces prolactin secreting pituitary tumor growth. Journal of Cell Communication and Signaling, 2017, 11, 227-232.	1.8	1
15	Alcohol effects on the epigenome in the germline: Role in the inheritance of alcohol-related pathology. Alcohol, 2017, 60, 53-66.	0.8	54
16	MicroRNA-9 regulates fetal alcohol-induced changes in D2 receptor to promote prolactin production. Journal of Endocrinology, 2017, 235, 1-14.	1.2	30
17	Preconception alcohol increases offspring vulnerability to stress via epigenetic programming. Alcohol, 2017, 60, 205.	0.8	0
18	Mu-opioid receptor and delta-opioid receptor differentially regulate microglial inflammatory response to control proopiomelanocortin neuronal apoptosis in the hypothalamus: effects of neonatal alcohol. Journal of Neuroinflammation, 2017, 14, 83.	3.1	40

#	Article	IF	CITATIONS
19	Turnover of histones and histone variants in postnatal rat brain: effects of alcohol exposure. Clinical Epigenetics, 2017, 9, 117.	1.8	16
20	Hypothalamic beta-endorphin neurons suppress preneoplastic and neoplastic lesions development in 1,2-dimethylhydrazine induced rat colon cancer model. Journal of Cancer, 2017, 8, 3105-3113.	1.2	6
21	Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System. Alcohol Research: Current Reviews, 2017, 38, 255-276.	1.9	14
22	Inhibition of Mammary Cancer Progression in Fetal Alcohol Exposed Rats by <i>β</i> â€Endorphin Neurons. Alcoholism: Clinical and Experimental Research, 2016, 40, 134-140.	1.4	9
23	Male germline transmits fetal alcohol epigenetic marks for multiple generations: a review. Addiction Biology, 2016, 21, 23-34.	1.4	36
24	Preconception Alcohol Increases Offspring Vulnerability to Stress. Neuropsychopharmacology, 2016, 41, 2782-2793.	2.8	30
25	<i>β</i> â€Endorphin Neuronal Transplantation Into the Hypothalamus Alters Anxietyâ€Like Behaviors in Prenatal Alcoholâ€Exposed Rats and Alcoholâ€Nonâ€Preferring and Alcoholâ€Preferring Rats. Alcoholism: Clinical and Experimental Research, 2015, 39, 146-157.	1.4	14
26	Fetal Alcohol Exposure Reduces Dopamine Receptor D2 and Increases Pituitary Weight and Prolactin Production via Epigenetic Mechanisms. PLoS ONE, 2015, 10, e0140699.	1.1	31
27	Beta-Endorphin Cell Therapy for Cancer Prevention. Cancer Prevention Research, 2015, 8, 56-67.	0.7	24
28	Fetal Alcohol Exposure Increases Susceptibility to Carcinogenesis and Promotes Tumor Progression in Prostate Cland. Advances in Experimental Medicine and Biology, 2015, 815, 389-402.	0.8	7
29	Alcohol exposure in utero perturbs retinoid homeostasis in adult rats. Hepatobiliary Surgery and Nutrition, 2015, 4, 268-77.	0.7	5
30	Neuroimmune Function and the Consequences of Alcohol Exposure. , 2015, 37, 331-41, 344-51.		82
31	Fetal Alcohol Exposure Alters Proopiomelanocortin Gene Expression and Hypothalamic-Pituitary-Adrenal Axis Function via Increasing MeCP2 Expression in the Hypothalamus. PLoS ONE, 2014, 9, e113228.	1.1	49
32	Fetal alcohol spectrum disorders and their transmission through genetic and epigenetic mechanisms. Frontiers in Genetics, 2014, 5, 154.	1.1	72
33	Transgenerational Epigenetics and Brain Disorders. International Review of Neurobiology, 2014, 115, 51-73.	0.9	16
34	Fetal Alcohol Exposure Disrupts Metabolic Signaling in Hypothalamic Proopiomelanocortin Neurons via a Circadian Mechanism in Male Mice. Endocrinology, 2014, 155, 2578-2588.	1.4	10
35	Fetal Alcohol Programming of Hypothalamic Proopiomelanocortin System by Epigenetic Mechanisms and Later Life Vulnerability to Stress. Alcoholism: Clinical and Experimental Research, 2014, 38, 2323-2330.	1.4	26
36	Role of Microglia in Regulation of Ethanol Neurotoxic Action. International Review of Neurobiology, 2014, 118, 81-103.	0.9	81

#	Article	IF	CITATIONS
37	Protective Effects of Hypothalamic Betaâ€Endorphin Neurons Against Alcoholâ€Induced Liver Injuries and Liver Cancers in Rat Animal Models. Alcoholism: Clinical and Experimental Research, 2014, 38, 2988-2997.	1.4	11
38	Gestational Choline Supplementation Normalized Fetal Alcohol-Induced Alterations in Histone Modifications, DNA Methylation, and Proopiomelanocortin (POMC) Gene Expression in Î ² -Endorphin-Producing POMC Neurons of the Hypothalamus. Alcoholism: Clinical and Experimental Research, 2013, 37, 1133-1142.	1.4	134
39	Effects of Alcohol on the Endocrine System. Endocrinology and Metabolism Clinics of North America, 2013, 42, 593-615.	1.2	78
40	Cyclic Adenosine Monophosphate and Brainâ€Derived Neurotrophic Factor Decreased Oxidative Stress and Apoptosis in Developing Hypothalamic Neuronal Cells: Role of Microglia. Alcoholism: Clinical and Experimental Research, 2013, 37, 1370-1379.	1.4	62
41	Crosstalk between the circadian clock circuitry and the immune system. Chronobiology International, 2013, 30, 870-888.	0.9	235
42	Beta-Endorphin Neuron Regulates Stress Response and Innate Immunity to Prevent Breast Cancer Growth and Progression. Vitamins and Hormones, 2013, 93, 263-276.	0.7	28
43	Altered Circadian Expression of Cytokines and Cytolytic Factors in Splenic Natural Killer Cells of <i>Per1^{â^'/â^'}</i> Mutant Mice. Journal of Interferon and Cytokine Research, 2013, 33, 108-114.	0.5	41
44	Alcohol Exposure in Utero Increases Susceptibility to Prostate Tumorigenesis in Rat Offspring. Alcoholism: Clinical and Experimental Research, 2013, 37, 1901-1909.	1.4	22
45	Microglia Play a Role in Ethanolâ€Induced Oxidative Stress and Apoptosis in Developing Hypothalamic Neurons. Alcoholism: Clinical and Experimental Research, 2013, 37, 252-262.	1.4	56
46	Evidence for Possible <i><scp>P</scp>eriod 2</i> Gene Mediation of the Effects of Alcohol Exposure During the Postnatal Period on Genes Associated with Maintaining Metabolic Signaling in the Mouse Hypothalamus. Alcoholism: Clinical and Experimental Research, 2013, 37, 263-269.	1.4	10
47	Chronic Shift-Lag Alters the Circadian Clock of NK Cells and Promotes Lung Cancer Growth in Rats. Journal of Immunology, 2012, 188, 2583-2591.	0.4	120
48	β-endorphin neuron transplantation. Oncolmmunology, 2012, 1, 552-554.	2.1	6
49	Regulation of Cancer Progression by β-Endorphin Neuron. Cancer Research, 2012, 72, 836-840.	0.4	49
50	Estrogen inhibits D2S receptor-regulated Gi3 and Gs protein interactions to stimulate prolactin production and cell proliferation in lactotropic cells. Journal of Endocrinology, 2012, 214, 67-78.	1.2	6
51	Opiate Antagonist Prevents μ- and Î′-Opiate Receptor Dimerization to Facilitate Ability of Agonist to Control Ethanol-altered Natural Killer Cell Functions and Mammary Tumor Growth. Journal of Biological Chemistry, 2012, 287, 16734-16747.	1.6	27
52	Male Germline Transmits Fetal Alcohol Adverse Effect on Hypothalamic Proopiomelanocortin Gene Across Generations. Biological Psychiatry, 2012, 72, 378-388.	0.7	215
53	Circadian nature of immune function. Molecular and Cellular Endocrinology, 2012, 349, 82-90.	1.6	146
54	Roles of Dopamine 2 Receptor Isoforms and G Proteins in Ethanol Regulated Prolactin Synthesis and Lactotropic Cell Proliferation. PLoS ONE, 2012, 7, e45593.	1.1	2

#	Article	IF	CITATIONS
55	Abstract 537: Alcohol exposure in utero induces histophysiological changes in prostate and increases susceptibility to prostate tumorigenesis in rat offspring. , 2012, , .		0
56	Circadian genes, the stress axis, and alcoholism. , 2012, 34, 362-6.		12
57	Role of sympathetic nervous system in the entrainment of circadian natural-killer cell functionâ~†. Brain, Behavior, and Immunity, 2011, 25, 101-109.	2.0	44
58	Dopamine-Induced Apoptosis of Lactotropes Is Mediated by the Short Isoform of D2 Receptor. PLoS ONE, 2011, 6, e18097.	1.1	36
59	Transplantation of β-Endorphin Neurons into the Hypothalamus Promotes Immune Function and Restricts the Growth and Metastasis of Mammary Carcinoma. Cancer Research, 2011, 71, 6282-6291.	0.4	45
60	<i>Period</i> 2 Gene Deletion Abolishes βâ€Endorphin Neuronal Response to Ethanol. Alcoholism: Clinical and Experimental Research, 2010, 34, 1613-1618.	1.4	26
61	Role of Microglia in Ethanol's Apoptotic Action on Hypothalamic Neuronal Cells in Primary Cultures. Alcoholism: Clinical and Experimental Research, 2010, 34, 1835-1842.	1.4	57
62	Fetal Alcohol Exposure Increases Mammary Tumor Susceptibility and Alters Tumor Phenotype in Rats. Alcoholism: Clinical and Experimental Research, 2010, 34, 1879-1887.	1.4	46
63	Opioid-Like Activity of Naltrexone on Natural Killer Cell Cytolytic Activity and Cytokine Production in Splenocytes: Effects of Alcohol. Journal of Interferon and Cytokine Research, 2010, 30, 15-22.	0.5	10
64	Hyperprolactinemia following Chronic Alcohol Administration. Frontiers of Hormone Research, 2010, 38, 32-41.	1.0	13
65	βâ€Endorphin Neuronal Cell Transplant Reduces Corticotropin Releasing Hormone Hyperresponse to Lipopolysaccharide and Eliminates Natural Killer Cell Functional Deficiencies in Fetal Alcohol Exposed Rats. Alcoholism: Clinical and Experimental Research, 2009, 33, 931-937.	1.4	46
66	Are Circadian Rhythms the Code of Hypothalamic-Immune Communication? Insights from Natural Killer Cells. Neurochemical Research, 2008, 33, 708-718.	1.6	50
67	Ethanol Induces Apoptotic Death of βâ€Endorphin Neurons in the Rat Hypothalamus by a TGFâ€Î²1â€Dependent Mechanism. Alcoholism: Clinical and Experimental Research, 2008, 32, 706-714.	1.4	26
68	Alteration in G Proteins and Prolactin Levels in Pituitary After Ethanol and Estrogen Treatment. Alcoholism: Clinical and Experimental Research, 2008, 32, 806-813.	1.4	9
69	Cyclic adenosine monophosphate differentiated β-endorphin neurons promote immune function and prevent prostate cancer growth. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9105-9110.	3.3	42
70	Alcohol Exposure during the Developmental Period Induces β-Endorphin Neuronal Death and Causes Alteration in the Opioid Control of Stress Axis Function. Endocrinology, 2007, 148, 2828-2834.	1.4	65
71	Changes in thrombospondin-1 levels in the endothelial cells of the anterior pituitary during estrogen-induced prolactin-secreting pituitary tumors. Journal of Endocrinology, 2007, 192, 395-403.	1.2	14
72	Ethanol Alters Production and Secretion of Estrogen-Regulated Growth Factors That Control Prolactin-Secreting Tumors in the Pituitary. Alcoholism: Clinical and Experimental Research, 2007, 31, 2101-2105.	1.4	13

#	Article	IF	CITATIONS
73	Genesis of Prolactinomas: Studies Using Estrogen-Treated Animals. , 2006, 35, 32-49.		52
74	Evidence supporting a circadian control of natural killer cell function. Brain, Behavior, and Immunity, 2006, 20, 469-476.	2.0	119
75	Prenatal ethanol exposure alters the expression of period genes governing the circadian function of beta-endorphin neurons in the hypothalamus. Journal of Neurochemistry, 2006, 97, 1026-1033.	2.1	47
76	Fetal Ethanol Exposure Disrupts the Daily Rhythms of Splenic Granzyme B, IFN-gamma, and NK Cell Cytotoxicity in Adulthood. Alcoholism: Clinical and Experimental Research, 2006, 30, 1039-1044.	1.4	26
77	Role of ?-Endorphin, Corticotropin-Releasing Hormone, and Autonomic Nervous System in Mediation of the Effect of Chronic Ethanol on Natural Killer Cell Cytolytic Activity. Alcoholism: Clinical and Experimental Research, 2006, 30, 1761-1767.	1.4	29
78	Ethanol Suppression of the Hypothalamic Proopiomelanocortin Level and the Splenic NK Cell Cytolytic Activity Is Associated With a Reduction in the Expression of Proinflammatory Cytokines but Not Anti-inflammatory Cytokines in Neuroendocrine and Immune Cells. Alcoholism: Clinical and Experimental Research, 2006, 30, 1925-1932.	1.4	21
79	Isolation and Characterization of Rat Pituitary Endothelial Cells. Neuroendocrinology, 2006, 83, 387-393.	1.2	12
80	Ethanol Induces Apoptotic Death of Developing β-Endorphin Neurons via Suppression of Cyclic Adenosine Monophosphate Production and Activation of Transforming Growth Factor-β1-Linked Apoptotic Signaling. Molecular Pharmacology, 2006, 69, 706-717.	1.0	41
81	Short Communication:The Circadian GenemPer2Regulates the Daily Rhythm of IFN-γ. Journal of Interferon and Cytokine Research, 2006, 26, 645-649.	0.5	107
82	Neonatally Administered <i>tert</i> -Octylphenol Affects Onset of Puberty and Reproductive Development in Female Rats. Endocrine, 2005, 26, 161-168.	2.2	34
83	Vasoactive Intestinal Peptide and Corticotropin-Releasing Hormone Increase ??-Endorphin Release and Proopiomelanocortin Messenger RNA Levels in Primary Cultures of Hypothalamic Cells: Effects of Acute and Chronic Ethanol Treatment. Alcoholism: Clinical and Experimental Research, 2005, 29, 648-655.	1.4	12
84	Alcohol Consumption and the Body???s Biological Clock. Alcoholism: Clinical and Experimental Research, 2005, 29, 1550-1557.	1.4	139
85	β-endorphin modulation of interferon-γ, perforin and granzyme B levels in splenic NK cells: Effects of ethanol. Journal of Neuroimmunology, 2005, 166, 29-38.	1.1	18
86	Mediation of Basic Fibroblast Growth Factor-Induced Lactotropic Cell Proliferation by Src-Ras-Mitogen-Activated Protein Kinase p44/42 Signaling. Endocrinology, 2005, 146, 1948-1955.	1.4	20
87	Circadian Oscillations of Clock Genes, Cytolytic Factors, and Cytokines in Rat NK Cells. Journal of Immunology, 2005, 174, 7618-7624.	0.4	189
88	Transforming Growth Factor-β3 Increases Gap-Junctional Communication among Folliculostellate Cells to Release Basic Fibroblast Growth Factor. Endocrinology, 2005, 146, 4054-4060.	1.4	20
89	Role of Protein Kinase C-Ras-MAPK p44/42 in Ethanol and Transforming Growth Factor-β3-Induced Basic Fibroblast Growth Factor Release from Folliculostellate Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1346-1352.	1.3	12
90	Potential of Gene Therapy for the Treatment of Pituitary Tumors. Current Gene Therapy, 2004, 4, 79-87.	0.9	11

#	Article	IF	CITATIONS
91	Circadian Rhythms of Granzyme B, Perforin, IFN-γ, and NK Cell Cytolytic Activity in the Spleen: Effects of Chronic Ethanol. Journal of Immunology, 2004, 172, 2811-2817.	0.4	70
92	Opioid Antagonist Naltrexone Disrupts Feedback Interaction between μ and δOpioid Receptors in Splenocytes to Prevent Alcohol Inhibition of NK Cell Function. Journal of Immunology, 2004, 173, 42-49.	0.4	39
93	Folliculostellate Cells Determine the Susceptibility of Lactotropes to Estradiol's Mitogenic Action. Endocrinology, 2004, 145, 1473-1480.	1.4	35
94	Involvement of Protein Kinase C-Dependent Mitogen-Activated Protein Kinase p44/42 Signaling Pathway for Cross-Talk between Estradiol and Transforming Growth Factor-β3 in Increasing Basic Fibroblast Growth Factor in Folliculostellate Cells. Endocrinology, 2004, 145, 706-715.	1.4	19
95	Modulation of Hypothalamic ??-Endorphin???Regulated Expression of Natural Killer Cell Cytolytic Activity Regulatory Factors by Ethanol in Male Fischer-344 Rats. Alcoholism: Clinical and Experimental Research, 2004, 28, 1180-1186.	1.4	10
96	Catecholaminergic control of NK cell cytolytic activity regulatory factors in the spleen. Journal of Neuroimmunology, 2004, 151, 148-157.	1.1	40
97	Chronic ethanol consumption impairs the circadian rhythm of proâ€opiomelanocortin and period genes mRNA expression in the hypothalamus of the male rat. Journal of Neurochemistry, 2004, 88, 1547-1554.	2.1	129
98	Chronic Daily Ethanol and Withdrawal: 4. Long-Term Changes in Plasma Testosterone Regulation, But No Effect on GnRH Gene Expression or Plasma LH Concentrations. Endocrine, 2003, 22, 143-150.	2.2	13
99	Reduction of Perforin, Granzyme B, and Cytokine Interferon gamma by Ethanol in Male Fischer 344 Rats. Alcoholism: Clinical and Experimental Research, 2003, 27, 670-676.	1.4	8
100	Ethanol and Estradiol Modulate Alternative Splicing of Dopamine D2 Receptor Messenger RNA and Abolish the Inhibitory Action of Bromocriptine on Prolactin Release From the Pituitary Gland. Alcoholism: Clinical and Experimental Research, 2003, 27, 975-980.	1.4	42
101	Role of Nitric Oxide in Alcohol Alteration of ??-Endorphin Release From Hypothalamic Cells in Primary Cultures. Alcoholism: Clinical and Experimental Research, 2003, 27, 1813-1818.	1.4	9
102	Regulation of Gonadotropin Releasing Hormone Release by Neuropeptide Y at the Median Eminence during the Preovulatory Period in Ewes. Neuroendocrinology, 2003, 77, 246-257.	1.2	31
103	Distinct Signaling Pathways Mediate Stimulation of Cell Cycle Progression and Prevention of Apoptotic Cell Death by Estrogen in Rat Pituitary Tumor PR1 Cells. Molecular Biology of the Cell, 2003, 14, 5051-5059.	0.9	15
104	Ethanol and Estradiol Modulate Alternative Splicing of Dopamine D2 Receptor Messenger RNA and Abolish the Inhibitory Action of Bromocriptine on Prolactin Release From the Pituitary Gland. Alcoholism: Clinical and Experimental Research, 2003, 27, 975-980.	1.4	27
105	Reduction of Perforin, Granzyme B, and Cytokine Interferon ?? by Ethanol in Male Fischer 344 Rats. Alcoholism: Clinical and Experimental Research, 2003, 27, 670-676.	1.4	5
106	Role of Protein Kinase C in Control of Ethanol-Modulated β-Endorphin Release from Hypothalamic Neurons in Primary Cultures. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 119-128.	1.3	18
107	Finasteride-induced prostatic involution by apoptosis in dogs with benign prostatic hypertrophy. American Journal of Veterinary Research, 2002, 63, 495-498.	0.3	20
108	beta-Endorphin Modulation of Lymphocyte Proliferation: Effects of Ethanol. Alcoholism: Clinical and Experimental Research, 2002, 26, 1719-1727.	1.4	21

#	Article	IF	CITATIONS
109	Ethanol Induces Hyperprolactinemia by Increasing Prolactin Release and Lactotrope Growth in Female Rats. Alcoholism: Clinical and Experimental Research, 2002, 26, 1420-1429.	1.4	31
110	Ethanol Induces Hyperprolactinemia by Increasing Prolactin Release and Lactotrope Growth in Female Rats. , 2002, 26, 1420.		1
111	??-Endorphin Modulation of Lymphocyte Proliferation: Effects of Ethanol. Alcoholism: Clinical and Experimental Research, 2002, 26, 1719-1727.	1.4	Ο
112	Ethanol induces hyperprolactinemia by increasing prolactin release and lactotrope growth in female rats. Alcoholism: Clinical and Experimental Research, 2002, 26, 1420-9.	1.4	23
113	Beta-endorphin modulation of lymphocyte proliferation: effects of ethanol. Alcoholism: Clinical and Experimental Research, 2002, 26, 1719-27.	1.4	15
114	Role of Estrogen in Alcohol Promotion of Breast Cancer and Prolactinomas. Alcoholism: Clinical and Experimental Research, 2001, 25, 230S-236S.	1.4	7
115	Effect of Antisense Suppression of Transforming Growth Factor-β3 Gene on Lactotropic Cell Proliferation. Journal of Neuroendocrinology, 2001, 13, 324-327.	1.2	9
116	Transforming Growth Factor-Î ² Regulation of Estradiol-Induced Prolactinomas. Frontiers in Neuroendocrinology, 2001, 22, 340-363.	2.5	55
117	Role of Estrogen in Alcohol Promotion of Breast Cancer and Prolactinomas. Alcoholism: Clinical and Experimental Research, 2001, 25, 230S-236S.	1.4	17
118	Effects of finasteride on size of the prostate gland and semen quality in dogs with benign prostatic hypertrophy. Journal of the American Veterinary Medical Association, 2001, 218, 1275-1280.	0.2	61
119	Chronic Ethanol Inhibits NK Cell Cytolytic Activity: Role of Opioid Peptide β-Endorphin. Journal of Immunology, 2001, 167, 5645-5652.	0.4	61
120	Estrogen-induced Prolactinoma Development: A Role for Cell-Cell Communication. , 2001, , 502-508.		0
121	Effects of exercise intensity and duration on plasma -endorphin concentrations in horses. American Journal of Veterinary Research, 2000, 61, 969-973.	0.3	39
122	Subjective and objective measurements of postoperative pain in cats. Journal of the American Veterinary Medical Association, 2000, 217, 685-690.	0.2	157
123	Transforming growth factor-β1 induces transforming growth factor-β1 and transforming growth factor-β receptor messenger RNAs and reduces complement C1qB messenger RNA in rat brain microglia. Neuroscience, 2000, 101, 313-321.	1.1	26
124	Effects of Ethanol on alpha-Adrenergic and beta-Adrenergic Agonist-Stimulated beta-Endorphin Release and cAMP Production in Hypothalamic Cells in Primary Cultures. Alcoholism: Clinical and Experimental Research, 1999, 23, 46-51.	1.4	11
125	Effect of Voltage-Dependent Calcium Channel Blockers on Ethanol-Induced beta-Endorphin Release From Hypothalamic Neurons in Primary Cultures. Alcoholism: Clinical and Experimental Research, 1999, 23, 850-855.	1.4	6
126	Effects of ethanol on basal and adenosine-induced increases in β-endorphin release and intracellular cAMP levels in hypothalamic cells. Brain Research, 1999, 824, 112-118.	1.1	16

#	Article	IF	CITATIONS
127	Effect of ethanol on calcium regulation in rat fetal hypothalamic cells in culture. Brain Research, 1999, 824, 89-96.	1.1	25
128	Interaction between estrogen receptor and Pit-1 protein is influenced by estrogen in pituitary cells. Journal of Steroid Biochemistry and Molecular Biology, 1999, 68, 145-152.	1.2	16
129	Role of Transforming Growth Factor (TGF)-β Type I and TGF-β Type II Receptors in the TGF-β1-Regulated Gene Expression in Pituitary Prolactin-Secreting Lactotropes ¹ . Endocrinology, 1998, 139, 3620-3628.	1.4	38
130	Hormonal control of pituitary prolactin-secreting tumors. Frontiers in Bioscience - Landmark, 1998, 3, d934-943.	3.0	32
131	Differential regulation by estrogens of growth and prolactin synthesis in pituitary cells suggests that only a small pool of estrogen receptors is required for growth. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2325-2330.	3.3	69
132	Over expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis. Carcinogenesis, 1997, 18, 1155-1161.	1.3	107
133	DOWNREGULATION OF TGF- $\hat{1}^21$ GENE EXPRESSION IN ANTERIOR PITUITARY CELLS TREATED WITH FORSKOLIN. Cytokine, 1997, 9, 106-111.	1.4	11
134	The secretory response of hypothalamic β-endorphin neurons to acute and chronic nicotine treatments and following nicotine withdrawal. Life Sciences, 1997, 61, A59-A66.	2.0	52
135	TRANSFORMING GROWTH FACTOR-Î ² 1 INHIBITS PROLACTIN SECRETION AND LACTOTROPIC CELL PROLIFERATION IN THE PITUITARY OF OESTROGEN-TREATED FISCHER 344 RATS. Neurochemistry International, 1997, 30, 499-506.	1.9	35
136	The Role of cAMP in Ethanol-Regulated beta-Endorphin Release from Hypothalamic Neurons. Alcoholism: Clinical and Experimental Research, 1997, 21, 728-731.	1.4	19
137	Effects of Ethanol on Basal and Prostaglandin E1-Induced Increases in beta-Endorphin Release and Intracellular cAMP Levels in Hypothalamic Cells. Alcoholism: Clinical and Experimental Research, 1997, 21, 1005-1009.	1.4	21
138	Pituitary lactotrope expresses transforming growth factor β (TGFβ) type II receptor mRNA and protein and contains 125I-TGFβ1 binding sites. Journal of Endocrinology, 1996, 149, 19-27.	1.2	47
139	Effect of Ethanol, Propanol, Butanol, and Catalase Enzyme Blockers on beta-Endorphin Secretion from Primary Cultures of Hypothalamic Neurons: Evidence for a Mediatory Role of Acetaldehyde in Ethanol Stimulation of beta-Endorphin Release. Alcoholism: Clinical and Experimental Research, 1995, 19, 339-344.	1.4	51
140	Effects of Dopamine D1 and D2 Receptor Agonists and Antagonists on Basal and Ethanol-Modulated ?-Endorphin Secretion from Hypothalamic Neurons in Primary Cultures. Journal of Neuroendocrinology, 1995, 7, 819-825.	1.2	4
141	Estrogen augments hypothalamicl²-endorphin secretion and activates an inhibitoryl²-endorphin short-loop feedback system. Endocrine, 1995, 3, 273-275.	2.2	1
142	Diurnal Variation in Luteinizing Hormone-Releasing Hormone and \hat{l}^2 -Endorphin Release in Pituitary Portal Plasma during the Rat Estrous Cycle1. Biology of Reproduction, 1995, 53, 38-45.	1.2	30
143	Effects of Chronic Alcohol on Immunoreactive beta-Endorphin Secretion from Hypothalamic Neurons in Primary Cultures: Evidence for Alcohol Tolerance, Withdrawal, and Sensitization Responses. Alcoholism: Clinical and Experimental Research, 1994, 18, 1497-1501.	1.4	32
144	Colocalization of prolactin and proliferating cell nuclear antigen in the anterior pituitary during estrogen-induced pituitary tumors. Cancer Letters, 1994, 87, 139-144.	3.2	30

#	Article	IF	CITATIONS
145	Effect of Alcohol, Acetaldehyde, and Salsolinol on ?-Endorphin Secretion from the Hypothalamic Neurons in Primary Cultures. Alcoholism: Clinical and Experimental Research, 1993, 17, 1261-1267.	1.4	43
146	Feed Restriction in Prepubertal Lambs: Effect on Puberty Onset and on in vivo Release of Luteinizing-Hormone-Releasing Hormone, Neuropeptide Y and Beta-Endorphin from the Posterior-Lateral Median Eminence. Neuroendocrinology, 1993, 57, 1171-1181.	1.2	42
147	β-Endorphin Regulation of LHRH Release at the Median Eminence Level: Immunocytochemical and Physiological Evidence in Hens. Neuroendocrinology, 1993, 57, 365-373.	1.2	19
148	Central Administration of Neuropeptide Y Induces Precocious Puberty in Female Rats. Neuroendocrinology, 1992, 56, 930-934.	1.2	21
149	Pituitary Portal Plasma Levels of Oxytocin during the Estrous Cycle, Lactation, and Hyperprolactinemia. Annals of the New York Academy of Sciences, 1992, 652, 397-410.	1.8	32
150	Transforming growth factor-beta 1 messenger RNA and protein expression in the pituitary gland: its action on prolactin secretion and lactotropic growth. Molecular Endocrinology, 1992, 6, 1825-1833.	3.7	70
151	Facilitatory Role of Neuropeptide Y on the Onset of Puberty: Effect of Immunoneutralization of Neuropeptide Yon the Release of Luteinizing Hormone and Luteinizing-Hormone-Releasing Hormone. Neuroendocrinology, 1990, 52, 112-115.	1.2	42
152	Correlative Changes of the Gonadotropin-Releasing Hormone and Gonadotropin-Releasing-Hormone-Associated Peptide Immunoreactivities in the Pituitary Portal Plasma in Female Rats. Neuroendocrinology, 1990, 52, 15-21.	1.2	8
153	Characterization of the Neurosecretory Activity of Hypothalamic β-Endorphin-Containing Neurons in Primary Culture*. Endocrinology, 1990, 126, 349-356.	1.4	19
154	Effect of acute ethanol on beta-endorphin secretion from rat fetal hypothalamic neurons in primary cultures. Life Sciences, 1990, 47, PL31-PL36.	2.0	25
155	Chronic Inhibition of Hypothalamic-Pituitary-Ovarian Axis and Body Weight Gain by Brain-Directed Delivery of Estradiol-1712 in Female Rats. Neuroendocrinology, 1989, 50, 204-210.	1.2	42
156	Evidence for Prolactin Feedback Actions on Hypothalamic Oxytocin, Vasoactive Intestinal Peptide and Dopamine Secretion. Neuroendocrinology, 1989, 49, 520-524.	1.2	67
157	NEUROPEPTIDE Y (NPY): A POSSIBLE ROLE IN THE INITIATION OF PUBERTY. Endocrinology, 1988, 123, 2152-2154.	1.4	70
158	Immunoneutralization of Oxytocin Attenuates Preovulatory Prolactin Secretion during Proestrus in the Rat. Neuroendocrinology, 1988, 48, 214-216.	1.2	36
159	In vivo Secretion of LHRH in Ovariectomized Rats Is Regulated by a Possible Autofeedback Mechanism. Neuroendocrinology, 1987, 45, 510-513.	1.2	63
160	Loss of Estradiol-Positive Feedback Action on LH Release during Prepubertal Period in Rats Treated Postnatally with an Opiate Antagonist. Neuroendocrinology, 1986, 44, 331-337.	1.2	8
161	Gonadotropin-Releasing Hormone-Like Immunoreactivity in Rat Placenta. Neuroendocrinology, 1986, 44, 397-400.	1.2	11
162	Relation of Gonadal Hormones to Differential LH Response to Naloxone in Prepubertal Male and Female Rats. Neuroendocrinology, 1985, 40, 165-170.	1.2	25

#	Article	IF	CITATIONS
163	Hyperprolactinemia Decreases the Luteinizing Hormone-Releasing Hormone Concentration in Pituitary Portal Plasma: A Possible Role for <i>β</i> -Endorphin as a Mediator*. Endocrinology, 1985, 116, 2080-2084.	1.4	106
164	Changes inÎ ² -Endorphin-Like Immunoreactivity in Pituitary Portal Blood during the Estrous Cycle and after Ovariectomy in Rats*. Endocrinology, 1985, 116, 2075-2079.	1.4	134
165	Cyclic Variation of Oxytocin in the Blood of Pituitary Portal Vessels of Rats. Neuroendocrinology, 1984, 39, 481-483.	1.2	84
166	Inhibition by estrogen of autofeedback regulation of prolactin secretion. Life Sciences, 1984, 34, 1819-1823.	2.0	3
167	Does LHRH meet the criteria for a hypothalamic releasing factor?. Psychoneuroendocrinology, 1983, 8, 259-275.	1.3	12
168	Uptake and release of [3H]dopamine by the median eminence: Evidence for presynaptic dopaminergic receptors and for dopaminergic feedback inhibition. Neuroscience, 1983, 10, 821-830.	1.1	43
169	Failure of Prolactin Short Loop Feedback Mechanism to Operate in Old as Compared to Young Female Rats*. Endocrinology, 1983, 113, 1452-1458.	1.4	24
170	Relation of the Neuroendocrine System to Development of Prolactin-Secreting Pituitary Tumors. , 1983, , 353-376.		8
171	Damage to hypothalamic dopaminergic neurons is associated with development of prolactin-secreting pituitary tumors. Science, 1982, 218, 684-686.	6.0	210
172	Sex difference in response to alphaxalone anaesthesia may be oestrogen dependent. Nature, 1982, 298, 270-272.	13.7	66
173	Conadotropin-Releasing Hormone Release into Hypophyseal Portal Blood and Mechanism of Action. , 1982, , 397-426.		8
174	Effect of manipulating central catecholamines on puberty and the surge of luteinizing hormone and gonadotropin releasing hormone induced by pregnant mare serum gonadotropin in female rats. Brain Research, 1981, 213, 335-349.	1.1	46
175	Conadotropin-Releasing Hormone (GnRH) in Pituitary Stalk Blood from Proestrous Rats: Effects of Anesthetics and Relationship Between Stored and Released GnRH and Luteinizing Hormone*. Endocrinology, 1980, 107, 1410-1417.	1.4	102
176	LUTEINIZING HORMONE RELEASING FACTOR IN PITUITARY STALK PLASMA FROM LONG-TERM OVARIECTOMIZED RATS: EFFECTS OF STEROIDS. Journal of Endocrinology, 1980, 86, 511-524.	1.2	211
177	EFFECTS OF GONADAL STEROIDS ON OUTPUT OF LUTEINIZING HORMONE RELEASING FACTOR INTO PITUITARY STALK BLOOD IN THE FEMALE RAT. Journal of Endocrinology, 1979, 80, 303-313.	1.2	112
178	MECHANISM OF THE FIRST SPONTANEOUS GONADOTROPHIN SURGE AND THAT INDUCED BY PREGNANT MARE SERUM AND EFFECTS OF NEONATAL ANDROGEN IN RATS. Journal of Endocrinology, 1979, 83, 339-354.	1.2	55
179	Conadotropin-releasing hormone surge in pro-oestrous rats. Nature, 1976, 264, 461-463.	13.7	504