
Fikret Aydin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8730675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rectified and Salt Concentration Dependent Wetting of Hydrophobic Nanopores. Journal of the American Chemical Society, 2022, 144, 11693-11705.	6.6	8
2	Dissipative Particle Dynamics Approaches to Modeling the Self-Assembly and Morphology of Neutral and Ionic Block Copolymers in Solution. Molecular Modeling and Simulation, 2021, , 75-100.	0.2	1
3	Ion Solvation and Transport in Narrow Carbon Nanotubes: Effects of Polarizability, Cationâ^'ï€ Interaction, and Confinement. Journal of Chemical Theory and Computation, 2021, 17, 1596-1605.	2.3	23
4	Unraveling the Ion Adsorption Kinetics in Microporous Carbon Electrodes: A Multiscale Quantum-Continuum Simulation and Experimental Approach. ACS Applied Materials & Interfaces, 2021, 13, 23567-23574.	4.0	4
5	Improving the accuracy and convergence of drug permeation simulations via machine-learned collective variables. Journal of Chemical Physics, 2021, 155, 045101.	1.2	11
6	Similarities and differences between potassium and ammonium ions in liquid water: a first-principles study. Physical Chemistry Chemical Physics, 2020, 22, 2540-2548.	1.3	33
7	Selectivity of nitrate and chloride ions in microporous carbons: the role of anisotropic hydration and applied potentials. Nanoscale, 2020, 12, 20292-20299.	2.8	11
8	Cation Selectivity in Capacitive Deionization: Elucidating the Role of Pore Size, Electrode Potential, and Ion Dehydration. ACS Applied Materials & amp; Interfaces, 2020, 12, 42644-42652.	4.0	40
9	Water-ion permselectivity of narrow-diameter carbon nanotubes. Science Advances, 2020, 6, .	4.7	58
10	Understanding Cation Selectivity in Carbon Nanopores with Hybrid First-Principles/Continuum Simulations: Implications for Water Desalination and Separation Technologies. ACS Applied Nano Materials, 2020, 3, 9740-9748.	2.4	23
11	Gating of Hydrophobic Nanopores with Large Anions. ACS Nano, 2020, 14, 4306-4315.	7.3	39
12	Strong Differential Monovalent Anion Selectivity in Narrow Diameter Carbon Nanotube Porins. ACS Nano, 2020, 14, 6269-6275.	7.3	35
13	Multiscale simulation methods: molecular dynamics and dissipative particle dynamics techniques. , 2020, , 105-125.		0
14	Mycolactone Toxin Membrane Permeation: Atomistic versus Coarse-Grained MARTINI Simulations. Biophysical Journal, 2019, 117, 87-98.	0.2	19
15	Ena/VASP processive elongation is modulated by avidity on actin filaments bundled by the filopodia cross-linker fascin. Molecular Biology of the Cell, 2019, 30, 851-862.	0.9	44
16	Multiscale simulation of actin filaments and actin-associated proteins. Biophysical Reviews, 2018, 10, 1521-1535.	1.5	7
17	Computational Modeling of Ena/VASP Interacting with Actin Filament to Understand its Processivity. Biophysical Journal, 2018, 114, 145a.	0.2	0
18	A review on phospholipid vesicles flowing through channels. MRS Communications, 2018, 8, 718-726.	0.8	4

Fikret Aydin

#	Article	IF	CITATIONS
19	Gating mechanisms during actin filament elongation by formins. ELife, 2018, 7, .	2.8	25
20	The Role of Intermolecular Interactions in the Polymerization of Actin by Formins. Biophysical Journal, 2017, 112, 560a.	0.2	0
21	Flow-Induced Shape Reconfiguration, Phase Separation, and Rupture of Bio-Inspired Vesicles. ACS Nano, 2017, 11, 6661-6671.	7.3	14
22	Implicit solvent coarseâ€grained model of polyamidoamine dendrimers: Role of generation and pH. Journal of Computational Chemistry, 2016, 37, 920-926.	1.5	11
23	Self-Assembly and Critical Aggregation Concentration Measurements of ABA Triblock Copolymers with Varying B Block Types: Model Development, Prediction, and Validation. Journal of Physical Chemistry B, 2016, 120, 3666-3676.	1.2	34
24	Harnessing steric hindrance to control interfacial adsorption of patchy nanoparticles onto hairy vesicles. Colloids and Surfaces B: Biointerfaces, 2016, 141, 458-466.	2.5	5
25	Modeling Interactions between Multicomponent Vesicles and Antimicrobial Peptide-Inspired Nanoparticles. ACS Nano, 2016, 10, 7351-7361.	7.3	13
26	Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption. Journal of Physical Chemistry B, 2016, 120, 6646-6656.	1.2	7
27	Harnessing Nanoscale Confinement to Design Sterically Stable Vesicles of Specific Shapes via Self-Assembly. Journal of Physical Chemistry B, 2015, 119, 10207-10215.	1.2	8
28	The design of shape-tunable hairy vesicles. Colloids and Surfaces B: Biointerfaces, 2015, 128, 268-275.	2.5	14
29	Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles. AIMS Materials Science, 2015, 2, 303-318.	0.7	2
30	Phase segregation in bio-inspired multi-component vesicles encompassing double tail phospholipid species. Soft Matter, 2014, 10, 6096-6108.	1.2	21
31	Bioinspired Vesicles Encompassing Two-Tail Phospholipids: Self-Assembly and Phase Segregation via Implicit Solvent Coarse-Grained Molecular Dynamics. Journal of Physical Chemistry B, 2014, 118, 8614-8623.	1.2	9
32	Design and Characterization of Nanostructured Biomaterials via the Self-assembly of Lipids. Materials Research Society Symposia Proceedings, 2013, 1498, 233-238.	0.1	0