Amit Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8730460/publications.pdf

Version: 2024-02-01

471509 552781 42 857 17 26 citations h-index g-index papers 47 47 47 719 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Metabolomics and transcriptomics of pheromone biosynthesis in an aggressive forest pest lps typographus. Insect Biochemistry and Molecular Biology, 2022, 140, 103680.	2.7	17
2	Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest lps typographus. Data in Brief, 2022, 41, 107912.	1.0	1
3	How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. International Journal of Molecular Sciences, 2022, 23, 1995.	4.1	50
4	Identifying optimal reference genes for gene expression studies in Eurasian spruce bark beetle, lps typographus (Coleoptera: Curculionidae: Scolytinae). Scientific Reports, 2022, 12, 4671.	3.3	6
5	A Comprehensive Analysis of Calmodulin-Like Proteins of Glycine max Indicates Their Role in Calcium Signaling and Plant Defense Against Insect Attack. Frontiers in Plant Science, 2022, 13, 817950.	3.6	16
6	Plant Responses to Biotic Stress: Old Memories Matter. Plants, 2022, 11, 84.	3.5	30
7	Pesticide resistance in arthropods: Ecology matters too. Ecology Letters, 2022, 25, 1746-1759.	6.4	29
8	Microbial Influence on Plant–Insect Interaction. , 2021, , 337-363.		8
9	Plant Volatiles and Their Role in Insect Olfaction. , 2021, , 127-156.		5
10	Deciphering the Role of Phytoanticipins, Phytoalexins, and Polyphenols in Plant-Insect Defense. , 2021, , 305-335.		1
11	Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthaseâ€inhibiting herbicides in ⟨i⟩Bromus sterilis⟨ i⟩. Pest Management Science, 2021, 77, 2122-2128.	3.4	30
12	Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant–Pathogen Interaction. Plants, 2021, 10, 1098.	3.5	19
13	Identification of the most suitable reference gene for gene expression studies with development and abiotic stress response in Bromus sterilis. Scientific Reports, 2021, 11, 13393.	3.3	6
14	Inhibition of Bemisia tabaci vectored, GroEL mediated transmission of tomato leaf curl New Delhi virus by garlic leaf lectin (Allium sativum leaf agglutinin). Virus Research, 2021, 300, 198443.	2.2	1
15	A highly-contiguous genome assembly of the Eurasian spruce bark beetle, lps typographus, provides insight into a major forest pest. Communications Biology, 2021, 4, 1059.	4.4	17
16	Natural Insecticidal Proteins and Their Potential in Future IPM., 2021,, 265-303.		0
17	Reference Gene Selection for Normalizing Gene Expression in Ips Sexdentatus (Coleoptera:) Tj ETQq1 1 0.78431 752768.	.4 rgBT /O\ 2.8	verlock 10 Tf 9 11
18	RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype?. Frontiers in Plant Science, 2021, 12, 733608.	3.6	2

#	Article	IF	CITATIONS
19	Molecular Rationale of Insect-Microbes Symbiosisâ€"From Insect Behaviour to Mechanism. Microorganisms, 2021, 9, 2422.	3.6	11
20	RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype?. Frontiers in Plant Science, 2021, 12, 733608.	3.6	21
21	Core Mycobiome and Their Ecological Relevance in the Gut of Five Ips Bark Beetles (Coleoptera:) Tj ETQq $1\ 1\ 0.784$	1314 rgBT 3.5	/Qyerlock 1
22	Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance. Scientific Reports, 2020, 10, 18572.	3.3	31
23	Transcriptome Analysis of Gene Families Involved in Chemosensory Function in Spodoptera littoralis (Lepidoptera: Noctuidae). BMC Genomics, 2019, 20, 428.	2.8	69
24	Impact of Rhabdocline pseudotsugae and Phaeocryptopus gaeumannii on the Selection of Suitable Provenances of Douglas Fir in Central Europe. Forests, 2019, 10, 204.	2.1	0
25	Plant Cell Wall: A Simple Physical Barrier or a Complex Defense Modulator – Exploring Its Dynamic Role at Plant-Fungus Interface. , 2018, , 333-351.		2
26	CREB-binding protein plays key roles in juvenile hormone action in the red flour beetle, Tribolium Castaneum. Scientific Reports, 2018, 8, 1426.	3.3	20
27	Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC Genomics, 2018, 19, 934.	2.8	40
28	Cap 'n' collar C regulates genes responsible for imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Insect Biochemistry and Molecular Biology, 2018, 99, 54-62.	2.7	67
29	Multiple functions of CREB-binding protein during postembryonic development: identification of target genes. BMC Genomics, 2017, 18, 996.	2.8	33
30	Data set for diet specific differential gene expression analysis in three Spodoptera moths. Data in Brief, 2016, 8, 448-455.	1.0	1
31	Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochemistry and Molecular Biology, 2016, 71, 91-105.	2.7	81
32	Deciphering the mode of action of a mutant Allium sativum Leaf Agglutinin (mASAL), a potent antifungal protein on Rhizoctonia solani. BMC Microbiology, 2015, 15, 237.	3.3	23
33	Molecular Mechanism Underlying the Entomotoxic Effect of Colocasia esculenta Tuber Agglutinin against Dysdercus cingulatus. Insects, 2015, 6, 827-846.	2.2	9
34	Binding of insecticidal lectin <i><scp>C</scp>olocasia esculenta</i> tuber agglutinin (<scp>CEA</scp>) to midgut receptors of <i><scp>B</scp>emisia tabaci</i> and <i><scp>L</scp>ipaphis erysimi</i> provides clues to its insecticidal potential. Proteomics, 2014, 14, 1646-1659.	2.2	28
35	Biological Safety Assessment of Mutant Variant of Allium sativum Leaf Agglutinin (mASAL), a Novel Antifungal Protein for Future Transgenic Application. Journal of Agricultural and Food Chemistry, 2013, 61, 11858-11864.	5.2	12
36	Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/loxmediated recombination. BMC Biotechnology, 2013, 13, 88.	3.3	22

Аміт Roy

#	Article	IF	CITATION
37	Insight to the Mode of Action of <i>Allium sativum</i> Leaf Agglutinin (ASAL) Expressing in T ₃ Rice Lines on Brown Planthopper. American Journal of Plant Sciences, 2013, 04, 400-407.	0.8	14
38	Characterization of a Highly Potent Insecticidal Lectin from & Description of the Coding Sequence. American Journal of Plant Sciences, 2013, 04, 408-416.	0.8	18
39	Exploring the Insecticidal Potentiality of <i>Amorphophallus paeonifolius</i> Tuber Agglutinin in Hemipteran Pest Management. American Journal of Plant Sciences, 2012, 03, 780-790.	0.8	9
40	Functional Alteration of a Dimeric Insecticidal Lectin to a Monomeric Antifungal Protein Correlated to Its Oligomeric Status. PLoS ONE, 2011, 6, e18593.	2.5	39
41	Allergenicity Assessment of Allium sativum Leaf Agglutinin, a Potential Candidate Protein for Developing Sap Sucking Insect Resistant Food Crops. PLoS ONE, 2011, 6, e27716.	2.5	19
42	Queen Harems of Higher Termites are Regulated by Queen Pheromone. SSRN Electronic Journal, 0, , .	0.4	0