Sean Davidson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/87301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lschaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515, 431-435.	13.7	1,989
2	Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury. Circulation, 2010, 121, 2012-2022.	1.6	845
3	De novo cardiomyocytes from within the activated adult heart after injury. Nature, 2011, 474, 640-644.	13.7	602
4	Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury. Journal of the American College of Cardiology, 2019, 73, 89-99.	1.2	484
5	Plasma Exosomes Protect the Myocardium From Ischemia-Reperfusion Injury. Journal of the American College of Cardiology, 2015, 65, 1525-1536.	1.2	436
6	Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion. Circulation Research, 2015, 116, 1312-1323.	2.0	419
7	Endothelial Mitochondria. Circulation Research, 2007, 100, 1128-1141.	2.0	331
8	Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Research in Cardiology, 2018, 113, 39.	2.5	311
9	Necrostatin: A Potentially Novel Cardioprotective Agent?. Cardiovascular Drugs and Therapy, 2007, 21, 227-233.	1.3	292
10	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	1.8	284
11	Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 564-585.	1.8	278
12	Microvesicles and exosomes: new players in metabolic and cardiovascular disease. Journal of Endocrinology, 2016, 228, R57-R71.	1.2	270
13	lschaemic conditioning and targeting reperfusion injury: a 30Âyear voyage of discovery. Basic Research in Cardiology, 2016, 111, 70.	2.5	257
14	Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or sizeâ€exclusion chromatography: yield, purity and functional potential. Journal of Extracellular Vesicles, 2019, 8, 1560809.	5.5	254
15	Molecular regulation of cardiac hypertrophy. International Journal of Biochemistry and Cell Biology, 2008, 40, 2023-2039.	1.2	250
16	Preconditioning and postconditioning: The essential role of the mitochondrial permeability transition pore. Cardiovascular Research, 2007, 75, 530-535.	1.8	232
17	Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European Heart Journal, 2016, 37, 1789-1798.	1.0	210
18	Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovascular Research, 2006, 72, 313-321.	1.8	205

#	Article	IF	CITATIONS
19	STAT-1 Interacts with p53 to Enhance DNA Damage-induced Apoptosis. Journal of Biological Chemistry, 2004, 279, 5811-5820.	1.6	200
20	Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemiareperfusion injury. Basic Research in Cardiology, 2007, 102, 518-528.	2.5	187
21	Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Research in Cardiology, 2008, 103, 274-284.	2.5	185
22	Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. International Journal of Biochemistry and Cell Biology, 2006, 38, 414-419.	1.2	167
23	Exosomes. Circulation Research, 2014, 114, 325-332.	2.0	164
24	Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. Journal of Extracellular Vesicles, 2017, 6, 1388731.	5.5	152
25	The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovascular Research, 2019, 115, 1143-1155.	1.8	151
26	The Cardioprotective Effect of Necrostatin Requires the Cyclophilin-D Component of the Mitochondrial Permeability Transition Pore. Cardiovascular Drugs and Therapy, 2007, 21, 467-469.	1.3	150
27	Photoaffinity Labeling of Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Targets in Mammalian Cells*. Journal of Biological Chemistry, 2012, 287, 2296-2307.	1.6	150
28	ESC Working Group Cellular Biology of the Heart: Position Paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovascular Research, 2014, 104, 399-411.	1.8	143
29	Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. British Journal of Pharmacology, 2006, 149, 5-13.	2.7	137
30	HIF-1 reduces ischaemia–reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovascular Research, 2014, 104, 24-36.	1.8	136
31	The novel adipocytokine visfatin exerts direct cardioprotective effects. Journal of Cellular and Molecular Medicine, 2008, 12, 1395-1403.	1.6	125
32	Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy, 2021, 23, 373-380.	0.3	125
33	Remote ischaemic preconditioning involves signalling through the SDF-11±/CXCR4 signalling axis. Basic Research in Cardiology, 2013, 108, 377.	2.5	119
34	Mitochondrial and mitochondrialâ€independent pathways of myocardial cell death during ischaemia and reperfusion injury. Journal of Cellular and Molecular Medicine, 2020, 24, 3795-3806.	1.6	118
35	Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 725-736.	1.8	114
36	Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2123-H2134.	1.5	112

#	Article	IF	CITATIONS
37	Glycogen Synthase Kinase-3 Inactivation Is Not Required for Ischemic Preconditioning or Postconditioning in the Mouse. Circulation Research, 2008, 103, 307-314.	2.0	111
38	Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research, 2019, 115, 1156-1166.	1.8	106
39	Hsp25 and the p38 MAPK Pathway Are Involved in Differentiation of Cardiomyocytes. Developmental Biology, 2000, 218, 146-160.	0.9	103
40	Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop. Basic Research in Cardiology, 2015, 110, 453.	2.5	103
41	ALIX Regulates Tumor-Mediated Immunosuppression by Controlling EGFR Activity and PD-L1 Presentation. Cell Reports, 2018, 24, 630-641.	2.9	103
42	Innate immunity as a target for acute cardioprotection. Cardiovascular Research, 2019, 115, 1131-1142.	1.8	101
43	Endothelial mitochondria and heart disease. Cardiovascular Research, 2010, 88, 58-66.	1.8	100
44	Loss of PINK1 Increases the Heart's Vulnerability to Ischemia-Reperfusion Injury. PLoS ONE, 2013, 8, e62400.	1.1	99
45	Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1265-H1270.	1.5	94
46	ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 2019, 115, 488-500.	1.8	90
47	Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning. Cardiovascular Research, 2010, 88, 67-74.	1.8	86
48	Calcium microdomains and oxidative stress. Cell Calcium, 2006, 40, 561-574.	1.1	84
49	Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic Research in Cardiology, 2016, 111, 50.	2.5	84
50	The cytokine storm of COVID-19: a spotlight on prevention and protection. Expert Opinion on Therapeutic Targets, 2020, 24, 723-730.	1.5	84
51	Stromal derived factor 1α: A chemokine that delivers a two-pronged defence of the myocardium. , 2014, 143, 305-315.		82
52	Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of nonâ€diabetic exosomes <i>in vitro</i> . Journal of Cellular and Molecular Medicine, 2018, 22, 141-151.	1.6	82
53	Calcium handling precedes cardiac differentiation to initiate the first heartbeat. ELife, 2016, 5, .	2.8	81
54	Endothelial cells release cardioprotective exosomes that may contribute to ischaemic preconditioning. Scientific Reports, 2018, 8, 15885.	1.6	80

#	Article	IF	CITATIONS
55	Exosomes and cardioprotection – A critical analysis. Molecular Aspects of Medicine, 2018, 60, 104-114.	2.7	78
56	9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection. Basic Research in Cardiology, 2016, 111, 41.	2.5	77
57	Effects of NO on mitochondrial function in cardiomyocytes: Pathophysiological relevance. Cardiovascular Research, 2006, 71, 10-21.	1.8	74
58	Local Control of Nuclear Calcium Signaling in Cardiac Myocytes by Perinuclear Microdomains of Sarcolemmal Insulin-Like Growth Factor 1 Receptors. Circulation Research, 2013, 112, 236-245.	2.0	73
59	IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria: guidelines of the EU-CARDIOPROTECTION COST Action. Basic Research in Cardiology, 2021, 116, 52.	2.5	73
60	Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival. Human Molecular Genetics, 2003, 13, 117-135.	1.4	72
61	Remote ischaemic conditioning reduces infarct size in animal <i>in vivo</i> models of ischaemia-reperfusion injury: a systematic review and meta-analysis. Cardiovascular Research, 2017, 113, cvw219.	1.8	71
62	miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovascular Research, 2020, 116, 1226-1236.	1.8	71
63	Dexmedetomidine protects the heart against ischemia-reperfusion injury by an endothelial eNOS/NO dependent mechanism. Pharmacological Research, 2016, 103, 318-327.	3.1	69
64	Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal, 2021, 42, 2630-2642.	1.0	69
65	Metformin Prevents Myocardial Reperfusion Injury by Activating the Adenosine Receptor. Journal of Cardiovascular Pharmacology, 2009, 53, 373-378.	0.8	68
66	Transitory Activation of AMPK at Reperfusion Protects the Ischaemic-Reperfused Rat Myocardium Against Infarction. Cardiovascular Drugs and Therapy, 2010, 24, 25-32.	1.3	68
67	Exosomes and Cardiovascular Protection. Cardiovascular Drugs and Therapy, 2017, 31, 77-86.	1.3	68
68	Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovascular Research, 2012, 93, 445-453.	1.8	64
69	Novel therapeutic strategies for cardioprotection. , 2014, 144, 60-70.		64
70	DJ-1 protects against cell death following acute cardiac ischemia–reperfusion injury. Cell Death and Disease, 2014, 5, e1082-e1082.	2.7	63
71	l²3 adrenergic receptor selective stimulation during ischemia/reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes. Basic Research in Cardiology, 2014, 109, 422.	2.5	63
72	Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential. Basic Research in Cardiology, 2020, 115, 26.	2.5	62

#	Article	IF	CITATIONS
73	Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly by reducing oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H928-H938.	1.5	60
74	Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Research in Cardiology, 2018, 113, 25.	2.5	59
75	Mitochondrial cyclophilin-D as a potential therapeutic target for post-myocardial infarction heart failure. Journal of Cellular and Molecular Medicine, 2011, 15, 2443-2451.	1.6	58
76	The role of PI3Kα isoform in cardioprotection. Basic Research in Cardiology, 2017, 112, 66.	2.5	56
77	STAT-1 facilitates the ATM activated checkpoint pathway following DNA damage. Journal of Cell Science, 2005, 118, 1629-1639.	1.2	54
78	Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 367-385.	1.8	53
79	Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Research in Cardiology, 2020, 115, 73.	2.5	49
80	Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radical Biology and Medicine, 2021, 163, 325-343.	1.3	48
81	The powerful cardioprotective effects of urocortin and the corticotropin releasing hormone (CRH) family. Biochemical Pharmacology, 2009, 77, 141-150.	2.0	46
82	Cardioprotection mediated by urocortin is dependent upon PKCε activation. FASEB Journal, 2005, 19, 1-18.	0.2	44
83	Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore. Cardiovascular Research, 2015, 108, 357-366.	1.8	44
84	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	1.8	44
85	The Caspase 1 Inhibitor VX-765 Protects the Isolated Rat Heart via the RISK Pathway. Cardiovascular Drugs and Therapy, 2018, 32, 165-168.	1.3	43
86	Intrinsic cardiac ganglia and acetylcholine are important in the mechanism of ischaemic preconditioning. Basic Research in Cardiology, 2017, 112, 11.	2.5	42
87	From Protecting the Heart to Improving Athletic Performance – the Benefits of Local and Remote Ischaemic Preconditioning. Cardiovascular Drugs and Therapy, 2015, 29, 573-588.	1.3	41
88	Does remote ischaemic conditioning reduce inflammation? A focus on innate immunity and cytokine response. Basic Research in Cardiology, 2021, 116, 12.	2.5	41
89	The Transcriptional Coactivator p300 Plays a Critical Role in the Hypertrophic and Protective Pathways Induced by Phenylephrine in Cardiac Cells but Is Specific to the Hypertrophic Effect of Urocortin. ChemBioChem, 2005, 6, 162-170.	1.3	40
90	Hypertrophic effects of urocortin homologous peptides are mediated via activation of the Akt pathway. Biochemical and Biophysical Research Communications, 2005, 328, 442-448.	1.0	39

#	Article	IF	CITATIONS
91	Assessing Mitochondrial Potential, Calcium, and Redox State in Isolated Mammalian Cells Using Confocal Microscopy. Methods in Molecular Biology, 2007, 372, 421-430.	0.4	39
92	Role of Caspase 1 in Ischemia/Reperfusion Injury of the Myocardium. Journal of Cardiovascular Pharmacology, 2019, 74, 194-200.	0.8	38
93	The cannabinoid CB1 receptor antagonist, rimonabant, protects against acute myocardial infarction. Basic Research in Cardiology, 2009, 104, 781-792.	2.5	36
94	Therapeutic strategies utilizing SDF-1α in ischaemic cardiomyopathy. Cardiovascular Research, 2018, 114, 358-367.	1.8	36
95	Myocardial regeneration: expanding the repertoire of thymosin β4 in the ischemic heart. Annals of the New York Academy of Sciences, 2012, 1269, 92-101.	1.8	35
96	Cytotoxicity of 5-Aza-2′-deoxycytidine in a mammalian cell system. European Journal of Cancer, 1992, 28, 362-368.	1.3	34
97	Targeting myocardial ischaemic injury in the absence of reperfusion. Basic Research in Cardiology, 2020, 115, 63.	2.5	34
98	Neuroprotection in Rats Following Ischaemia-Reperfusion Injury by GLP-1 Analogues—Liraglutide and Semaglutide. Cardiovascular Drugs and Therapy, 2019, 33, 661-667.	1.3	33
99	Epistatic Rescue of Nkx2.5 Adult Cardiac Conduction Disease Phenotypes by Prospero-Related Homeobox Protein 1 and HDAC3. Circulation Research, 2012, 111, e19-31.	2.0	32
100	Increased production of functional small extracellular vesicles in senescent endothelial cells. Journal of Cellular and Molecular Medicine, 2020, 24, 4871-4876.	1.6	32
101	Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Research in Cardiology, 2021, 116, 32.	2.5	32
102	Urocortin: a protective peptide that targets both the myocardium and vasculature. Pharmacological Reports, 2009, 61, 172-182.	1.5	30
103	Role of PI3K in myocardial ischaemic preconditioning: mapping proâ€survival cascades at the trigger phase and at reperfusion. Journal of Cellular and Molecular Medicine, 2018, 22, 926-935.	1.6	30
104	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
105	A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Developmental Biology, 2015, 405, 82-95.	0.9	27
106	The cardioprotective effect of urocortin during ischaemia/reperfusion involves the prevention of mitochondrial damage. Biochemical and Biophysical Research Communications, 2004, 321, 479-486.	1.0	26
107	Biologically active constituents of the secretome of human W8B2+ cardiac stem cells. Scientific Reports, 2018, 8, 1579.	1.6	26
108	COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 2148-2160.	1.8	26

#	Article	IF	CITATIONS
109	The Developmental Expression of Small HSP. Progress in Molecular and Subcellular Biology, 2002, 28, 103-128.	0.9	24
110	Matrix metalloproteinase inhibition protects CyPD knockout mice independently of RISK/mPTP signalling: a parallel pathway to protection. Basic Research in Cardiology, 2013, 108, 331.	2.5	23
111	Progress in cardiac research: from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovascular Research, 2021, 117, 2161-2174.	1.8	23
112	Imaging Mitochondrial Calcium Signalling with Fluorescent Probes and Single or Two Photon Confocal Microscopy. Methods in Molecular Biology, 2012, 810, 219-234.	0.4	22
113	Cyclosporin A Induces an Atypical Heat Shock Response. Biochemical and Biophysical Research Communications, 2000, 269, 464-469.	1.0	20
114	The importance of clinically relevant background therapy in cardioprotective studies. Basic Research in Cardiology, 2020, 115, 69.	2.5	19
115	The Role of Extracellular DNA and Histones in Ischaemia-Reperfusion Injury of the Myocardium. Cardiovascular Drugs and Therapy, 2020, 34, 123-131.	1.3	19
116	Extracellular histones are a target in myocardial ischaemia–reperfusion injury. Cardiovascular Research, 2022, 118, 1115-1125.	1.8	19
117	The Cardioprotective Actions of Leptin Are Lost in the Zucker Obese (fa/fa) Rat. Journal of Cardiovascular Pharmacology, 2009, 53, 311-317.	0.8	18
118	The GTN patch: a simple and effective new approach to cardioprotection?. Basic Research in Cardiology, 2018, 113, 20.	2.5	18
119	Stromal cell-derived factor-1α signals via the endothelium to protect the heart against ischaemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 128, 187-197.	0.9	17
120	The Bacterial Nucleoside N6-Methyldeoxyadenosine Induces the Differentiation of Mammalian Tumor Cells. Biochemical and Biophysical Research Communications, 2001, 285, 800-805.	1.0	16
121	Exogenous Administration of Recombinant MIF at Physiological Concentrations Failed to Attenuate Infarct Size in a Langendorff Perfused Isolated Mouse Heart Model. Cardiovascular Drugs and Therapy, 2016, 30, 445-453.	1.3	16
122	Ischaemic Preconditioning Protects Cardiomyocytes from Anthracycline-Induced Toxicity via the PI3K Pathway. Cardiovascular Drugs and Therapy, 2018, 32, 245-253.	1.3	16
123	In vivo growth of a murine lymphoma cell line alters regulation of expression of HSP72. Molecular and Cellular Biology, 1995, 15, 1071-1078.	1.1	15
124	FLIP protects cardiomyocytes from apoptosis induced by simulated ischemia/reoxygenation, as demonstrated by short hairpin-induced (shRNA) silencing of FLIP mRNA. Journal of Molecular and Cellular Cardiology, 2003, 35, 1359-1364.	0.9	15
125	Exogenous SDF-1α Protects Human Myocardium from Hypoxia-Reoxygenation Injury via CXCR4. Cardiovascular Drugs and Therapy, 2015, 29, 589-592.	1.3	15
126	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	15

#	Article	IF	CITATIONS
127	Neuroprotection by remote ischemic conditioning in the setting of acute ischemic stroke: a preclinical two-centre study. Scientific Reports, 2020, 10, 16874.	1.6	15
128	Exosomes from neuronal stem cells may protect the heart from ischaemia/reperfusion injury via JAK1/2 and gp130. Journal of Cellular and Molecular Medicine, 2021, 25, 4455-4465.	1.6	14
129	Mitochondrial DNA Damage, Oxidative Stress, and Atherosclerosis. Circulation, 2013, 128, 681-683.	1.6	12
130	Failure of the Adipocytokine, Resistin, to Protect the Heart From Ischemia-Reperfusion Injury. Journal of Cardiovascular Pharmacology and Therapeutics, 2011, 16, 63-71.	1.0	11
131	Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply. Cardiovascular Research, 2017, 113, 1418-1419.	1.8	11
132	Mitochondrial PINK1—A Novel Cardioprotective Kinase?. Cardiovascular Drugs and Therapy, 2008, 22, 507-508.	1.3	10
133	27â€Exosomes Released from Endothelial Cells are Cardioprotective. Heart, 2014, 100, A10-A10.	1.2	10
134	Mitochondrial pharmacology: energy, injury and beyond. British Journal of Pharmacology, 2014, 171, 1795-1797.	2.7	10
135	Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovascular Research, 2021, , .	1.8	10
136	Myocardial Viability Imaging using Manganeseâ€Enhanced MRI in the First Hours after Myocardial Infarction. Advanced Science, 2021, 8, e2003987.	5.6	8
137	Stem Cell Aging and Age-Related Cardiovascular Disease: Perspectives of Treatment by Ex-vivo Stem Cell Rejuvenation. Current Drug Targets, 2015, 16, 780-785.	1.0	8
138	162â€Polymersomes Functionalized with HSP70 – Novel, Synthetic Cardioprotective Nanovesicles. Heart, 2016, 102, A115.2-A115.	1.2	7
139	Do We Really Need Aspirin Loading for STEMI?. Cardiovascular Drugs and Therapy, 2022, 36, 1221-1238.	1.3	7
140	The Mitochondrial Permeability Transition Pore as a Target for Cardioprotection in Hypertrophic Cardiomyopathy. Cardiovascular Drugs and Therapy, 2013, 27, 235-237.	1.3	6
141	Endothelial Insulin Resistance Protects the Heart Against Prolonged Ischemia–Reperfusion Injury But Does Not Prevent Insulin Transport Across the Endothelium in a Mouse Langendorff Model. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 586-591.	1.0	6
142	Imaging Mitochondrial Calcium Fluxes with Fluorescent Probes and Single- or Two-Photon Confocal Microscopy. Methods in Molecular Biology, 2018, 1782, 171-186.	0.4	6
143	Shining the spotlight on cardioprotection: beyond the cardiomyocyte. Cardiovascular Research, 2019, 115, 1115-1116.	1.8	6
144	STAT5 fits the RISK profile for cardioprotection. Jak-stat, 2012, 1, 73-76.	2.2	5

9

#	Article	IF	CITATIONS
145	24â€Protecting the Heart at a Distance: Exosomes for nano-sized Cardioprotection. Heart, 2014, 100, A9.1-A9.	1.2	5
146	TPC1 Knockout Knocks Out TPC1. Molecular and Cellular Biology, 2015, 35, 1882-1883.	1.1	5
147	162â€Regulated Exosome Secretion by Vascular Smooth Muscle Cells Mediates Vascular Calcification. Heart, 2014, 100, A93-A94.	1.2	4
148	New insights into cardiotoxicity caused by chemotherapeutic agents. British Journal of Pharmacology, 2017, 174, 3675-3676.	2.7	4
149	A novel recombinant antibody specific to full-length stromal derived factor-1 for potential application in biomarker studies. PLoS ONE, 2017, 12, e0174447.	1.1	4
150	Can glucagon-like peptide-1 (GLP-1) analogues make neuroprotection a reality?. Neural Regeneration Research, 2020, 15, 1852.	1.6	4
151	The role of nitric oxide in mitochondria. Focus on "Modulation of mitochondrial Ca2+ by nitric oxide in cultured bovine vascular endothelial cells― American Journal of Physiology - Cell Physiology, 2005, 289, C775-C777.	2.1	3
152	The effect of Cyclosporine A on cardiomyocytes differentiation. Journal of Cellular and Molecular Medicine, 2007, 11, 369-371.	1.6	3
153	Urocortin: A Few Inflammatory Remarks. Endocrinology, 2009, 150, 5205-5207.	1.4	3
154	Cardioprotection – is no the answer? A renewed look at nitric oxide signalling in cardiomyocytes. Cardiovascular Research, 2018, 114, 773-775.	1.8	3
155	Benefit of Extracellular Vesicles at the Blood-Brain Barrier. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1146-1148.	1.1	3
156	RIC in COVID-19—a Clinical Trial to Investigate Whether Remote Ischemic Conditioning (RIC) Can Prevent Deterioration to Critical Care in Patients with COVID-19. Cardiovascular Drugs and Therapy, 2022, 36, 925-930.	1.3	3
157	Does Hyperglycemia Reduce Proliferation or Increase Apoptosis?. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1486-H1487.	1.5	2
158	Transgenic overexpression of HSP56 does not result in cardiac hypertrophy nor protect from ischaemia/reperfusion injury. International Journal of Biochemistry and Cell Biology, 2011, 43, 74-79.	1.2	2
159	37 A novel role for DJ-1 in cardioprotection. Heart, 2011, 97, e8-e8.	1.2	2
160	A needle in a haystack: focus on "Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart― American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R183-R185.	0.9	2
161	Microvesicles and Exosomes in Local and Distant Communication with the Heart. Pancreatic Islet Biology, 2016, , 143-162.	0.1	2
162	Ventilation strategy has a major influence on remote ischaemic preconditioning in mice. Journal of Cellular and Molecular Medicine, 2017, 21, 2426-2431.	1.6	2

#	Article	IF	CITATIONS
163	Protection From Cardiac Ischemia-Reperfusion Injury by Epigenetic Regulation of NADPH Oxidase. Circulation, 2018, 138, 2837-2840.	1.6	2
164	FAM3A $\hat{a} \in$ "A mitochondrial route to the stimulation of angiogenesis?. EBioMedicine, 2019, 43, 3-4.	2.7	2
165	Preconditioning and postconditioning: The essential role of the mitochondrial permeability transition pore. Journal of Molecular and Cellular Cardiology, 2007, 42, S171.	0.9	1
166	Apelin, the potentially therapeutic adipocytokine, protects against myocardial ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2007, 42, S208.	0.9	1
167	Metformin cardioprotects the diabetic heart by inhibiting mPTP opening via the risk pathway. Journal of Molecular and Cellular Cardiology, 2007, 42, S217.	0.9	1
168	The cardioprotective effect of atorvastatin—Is there a role for the adenosine receptor?. Journal of Molecular and Cellular Cardiology, 2008, 44, 778-779.	0.9	1
169	Response to "Causal reasoning: the â€~magical number' three― EMBO Reports, 2009, 10, 938-938.	2.0	1
170	High on the hog. Nature, 2010, 468, 594-594.	13.7	1
171	Reflections on 40â€years of the British Society for Cardiovascular Research (BSCR). Heart, 2013, 99, 1551-1553.	1.2	1
172	238 RAT PLASMA EXOSOMES ARE CARDIOPROTECTIVE. Heart, 2013, 99, A127.2-A127.	1.2	1
173	4â€Characterisation of Mitochondrial Morphology in the Adult Rodent Heart. Heart, 2014, 100, A2.4-A3.	1.2	1
174	UK–Russia Researcher Links Workshop: extracellular vesicles – mechanisms of biogenesis and roles in disease pathogenesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 1–5ÂMarch 2015. Journal of Extracellular Vesicles, 2015, 4, 28094.	5.5	1
175	Evaluating early and delayed cardioprotection by plasma exosomes in simulated ischaemia–reperfusion injury. Bioscience Horizons, 2015, 8, . Late Breaking Science posters657Aldehyde Dehydrogenase2 regulates senescence in the vascular	0.6	1
176	endothelium658Monoamine oxidase is over-activated in the left and right ventricles from human ischemic hearts: an intriguing therapeutic target659A novel assay for regulating transcription factors by flow660Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis661The Role of Histone	1.8	1
177	Methyl-transferase G9a in Heart Homeostasis. Cardiovascular Research, 2016, 111, S117-S119. Letter by Takov et al Regarding Article, "Fabrication of Synthetic Mesenchymal Stem Cells for the Treatment of Acute Myocardial Infarction in Mice― Circulation Research, 2017, 120, e46-e47.	2.0	1
178	Editorial to: "Building a Bridge to the Future of Cardiovascular Drugs and Therapy― Cardiovascular Drugs and Therapy, 2017, 31, 51-52.	1.3	1
179	Fantastic beasts and how to find them—Molecular identification of the mitochondrial ATP-sensitive potassium channel. Cell Calcium, 2019, 84, 102100.	1.1	1
180	Metformin protects against myocardial reperfusion injury via PI3-kinase-dependent inhibition of mitochondrial permeability transition. Journal of Molecular and Cellular Cardiology, 2006, 40, 961.	0.9	0

#	Article	IF	CITATIONS
181	Leptin, the obesity-related adipocytokine, protects the myocardium against ischaemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2006, 40, 963.	0.9	0
182	Dissecting out the mechanism of cardioprotection by endogenous erthyropoietin using genetic engineering. Cardiovascular Research, 2006, 71, 408-410.	1.8	0
183	Cardioprotective actions of necrostatin. Journal of Molecular and Cellular Cardiology, 2007, 42, S193.	0.9	0
184	Cardioprotective actions of the novel adipocytokine visfatin. Journal of Molecular and Cellular Cardiology, 2007, 42, S216-S217.	0.9	0
185	Over-expression of the cardioprotective kinase Akt modulates mitochondrial morphology. Journal of Molecular and Cellular Cardiology, 2008, 44, 726.	0.9	0
186	The adipocytokine, resistin, is not cardioprotective despite activating components of the risk pathway. Journal of Molecular and Cellular Cardiology, 2008, 44, 728.	0.9	0
187	Silencing PTEN, a negative regulator of the PI3K/AKT pathway, is not sufficient to confer protection against simulated ischaemia and reperfusion. Journal of Molecular and Cellular Cardiology, 2008, 44, 756.	0.9	0
188	Using multiphoton microscopy to examine the response of the heart to ischaemia and reperfusion injury. Journal of Molecular and Cellular Cardiology, 2008, 44, 778.	0.9	0
189	Leptin-stimulated inhibition of mitochondrial permeability transition is dependent on presence of functional OB-RB leptin receptor. Journal of Molecular and Cellular Cardiology, 2008, 44, 782.	0.9	0
190	Rho-kinase mediates reoxygenation-induced cardiomyocyte death and promotes mitochondrial transition pore opening. Journal of Molecular and Cellular Cardiology, 2008, 44, 791-792.	0.9	0
191	013â€Modulating mitochondrial dynamics as a novel cardioprotective strategy. Heart, 2010, 96, A10.3-A11.	1.2	0
192	015â€Mitochondrial cyclophilin-D as a therapeutic target for post-myocardial infarction heart failure. Heart, 2010, 96, A11.2-A11.	1.2	0
193	Flagging flora: heart disease link. Nature, 2011, 477, 162-162.	13.7	0
194	16 Matrix metalloproteinase inhibition is a parallel pathway to protection against reperfusion injury, both independent and additive to mitochondrial permeability transition pore inhibition. Heart, 2011, 97, e8-e8.	1.2	0
195	30 Endothelial dysfunction and/or impaired vascular insulin signalling may have a role in ischaemic preconditioning. Heart, 2011, 97, e8-e8.	1.2	0
196	Oral abstract presentations. Cardiovascular Research, 2012, 93, S88-S91.	1.8	0
197	116â€Matrix metalloproteinase inhibition attenuates reperfusion injury, independently of and additive to mitochondrial permeability transition pore inhibition. Heart, 2012, 98, A65-A66.	1.2	0
198	253 REMOTE ISCHAEMIC PRECONDITIONING IS MEDIATED VIA THE SDF 1Î ⁺ /CXCR4 SIGNALLING AXIS. Heart, 2013, 99, A134.1-A134.	'1.2	0

#	Article	IF	CITATIONS
199	310Plasma exosomes from rats and humans protect the myocardium from ischemia-reperfusion injury. Cardiovascular Research, 2014, 103, S56.3-S56.	1.8	0
200	P163Stromal derived factor 1-a protects human heart tissue from simulated ischaemia-reperfusion injury. Cardiovascular Research, 2014, 103, S28.1-S29.	1.8	0
201	P439Comparative metabolomics identifies conserved metabolic pathways that control mitochondrial ROS production during ischaemia reperfusion injury. Cardiovascular Research, 2014, 103, S81.1-S81.	1.8	0
202	CHARACTERISING A NOVEL ANTIBODY FOR FULL-LENGTH (ACTIVE) STROMAL DERIVED FACTOR-1α (1–67). Hea 2014, 100, A13.2-A13.	art, 1,2	0
203	P420NAADP signalling augments ischaemia-reperfusion injury via two-pore channel 1 (TPC1). Cardiovascular Research, 2014, 103, S77.1-S77.	1.8	0
204	9â€Importance of intrinsic cardiac nerves in both direct and remote ischaemic conditioning. Heart, 2015, 101, A3.3-A3.	1.2	0
205	28â€Remote ischaemic conditioning involves signalling via CXCR4 but does not increase circulating levels of its known ligands. Heart, 2015, 101, A9.2-A9.	1.2	0
206	STAT-1 facilitates the ATM activated checkpoint pathway following DNA damage. Journal of Cell Science, 2015, 128, 1064-1064.	1.2	0
207	193â€The role of the pi3k-alpha isoform in cardioprotection. Heart, 2017, 103, A131.2-A131.	1.2	0
208	P495Investigating SDF-1alpha signalling via CXCR7 receptor in the endothelium. Cardiovascular Research, 2018, 114, S120-S120.	1.8	0
209	Reflections of Research: Heart of hearts, by Sean Davidson. British Journal of Cardiac Nursing, 2018, 13, 256-256.	0.0	0
210	David Garcia-Dorado: a true pioneer in cardiac ischaemia/reperfusion injury. Cardiovascular Research, 2019, 115, e177-e180.	1.8	0
211	Al amyloidosis with cardiac involvement: cardiotoxicity of aggregation prone peptides deriving from variable domains of immunoglobulin light chains. European Heart Journal, 2020, 41, .	1.0	0
212	Hydrolytic activity of mitochondrial F1Fo ATP synthase as a target for myocardial ischemia: discovery and in vitro evaluation of novel inhibitors. European Heart Journal, 2020, 41, .	1.0	0
213	Abstract P752: Neuroprotection by Remote Ischemic Conditioning in the Setting of Acute Ischemic Stroke: A Preclinical Two-Centre International Study. Stroke, 2021, 52, .	1.0	0
214	112â€In vivo investigation of intracellular calcium levels in acute myocardial infarction using cardiac T1 mapping-manganese-enhanced MRI. , 2018, , .		0
215	Abstract 15048: Ischaemic Pre-conditioning: A Non-invasive Intervention That Improves Maternal Endothelial Function in Women With Preeclampsia And at Risk of Preeclampsia. Circulation, 2020, 142, .	1.6	0
216	Opioids in Acute Coronary Syndromes: Friend or Foe?. Cardiovascular Drugs and Therapy, 0, , .	1.3	0