Kevin M Shakesheff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8729934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering. Biomaterials, 2021, 266, 120450.	5.7	27
2	Fibroblast growth factor 7 releasing particles enhance islet engraftment and improve metabolic control following islet transplantation in mice with diabetes. American Journal of Transplantation, 2021, 21, 2950-2963.	2.6	12
3	Localized Induction of Gene Expression in Embryonic Stem Cell Aggregates Using Holographic Optical Tweezers to Create Biochemical Gradients. Regenerative Engineering and Translational Medicine, 2020, 6, 251-261.	1.6	1
4	Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Materials Science and Engineering C, 2020, 109, 110578.	3.8	76
5	Enhanced Cellular Transduction of Nanoparticles Resistant to Rapidly Forming Plasma Protein Coronas. Advanced Biology, 2020, 4, e2000162.	3.0	8
6	Magnetic Retrieval of Encapsulated Beta Cell Transplants from Diabetic Mice Using Dualâ€Function MRI Visible and Retrievable Microcapsules. Advanced Materials, 2020, 32, e1904502.	11.1	15
7	Targeted protein delivery: carbodiimide crosslinking influences protein release from microparticles incorporated within collagen scaffolds. International Journal of Energy Production and Management, 2019, 6, 279-287.	1.9	6
8	Highly versatile cell-penetrating peptide loaded scaffold for efficient and localised gene delivery to multiple cell types: From development to application in tissue engineering. Biomaterials, 2019, 216, 119277.	5.7	51
9	Overall Survival in Malignant Clioma Is Significantly Prolonged by Neurosurgical Delivery of Etoposide and Temozolomide from a Thermo-Responsive Biodegradable Paste. Clinical Cancer Research, 2019, 25, 5094-5106.	3.2	32
10	Three-Dimensional Printed Scaffolds with Controlled Micro-/Nanoporous Surface Topography Direct Chondrogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2019, 11, 18896-18906.	4.0	60
11	Microparticles for controlled growth differentiation factor 6 delivery to direct adipose stem cellâ€based nucleus pulposus regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1406-1417.	1.3	20
12	Overall survival in an orthotopic GBM model is significantly prolonged by neurosurgical delivery of PLGA/PEG interstitial chemotherapy. Neuro-Oncology, 2018, 20, i6-i6.	0.6	0
13	Bone extracellular matrix hydrogel enhances osteogenic differentiation of C2C12 myoblasts and mouse primary calvarial cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 900-908.	1.6	36
14	Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography. Biofabrication, 2018, 10, 025002.	3.7	27
15	Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations. International Journal of Pharmaceutics, 2018, 546, 272-278.	2.6	11
16	PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. Journal of Controlled Release, 2018, 285, 35-45.	4.8	150
17	Post-Modified Polypeptides with UCST-Type Behavior for Control of Cell Attachment in Physiological Conditions. Materials, 2018, 11, 95.	1.3	9
18	A biomaterials approach to influence stem cell fate in injectable cell-based therapies. Stem Cell Research and Therapy, 2018, 9, 39.	2.4	28

2

#	Article	IF	CITATIONS
19	Bioprinting Using Mechanically Robust Core–Shell Cellâ€Laden Hydrogel Strands. Macromolecular Bioscience, 2017, 17, 1600472.	2.1	49
20	Surface modification of PdlLGA microspheres with gelatine methacrylate: Evaluation of adsorption, entrapment, and oxygen plasma treatment approaches. Acta Biomaterialia, 2017, 53, 450-459.	4.1	20
21	Upper critical solution temperature thermo-responsive polymer brushes and a mechanism for controlled cell attachment. Journal of Materials Chemistry B, 2017, 5, 4926-4933.	2.9	48
22	Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 730-748.	1.9	77
23	Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. Npj Regenerative Medicine, 2017, 2, 23.	2.5	117
24	Extracellular matrixâ€derived hydrogels for dental stem cell delivery. Journal of Biomedical Materials Research - Part A, 2017, 105, 319-328.	2.1	28
25	Recent Advances in Tissue Engineering. Journal of Long-Term Effects of Medical Implants, 2017, 27, 199-231.	0.2	19
26	Microparticles for Sustained Growth Factor Delivery in the Regeneration of Critically-Sized Segmental Tibial Bone Defects. Materials, 2016, 9, 259.	1.3	25
27	Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. PLoS ONE, 2016, 11, e0148225.	1.1	114
28	The Application of Cryogenic Focused Ion Beam Scanning Electron Microscopy to Hydrogel Characterization Microscopy and Microanalysis, 2016, 22, 192-193.	0.2	2
29	A Detailed Assessment of Varying Ejection Rate on Delivery Efficiency of Mesenchymal Stem Cells Using Narrow-Bore Needles. Stem Cells Translational Medicine, 2016, 5, 366-378.	1.6	24
30	Highly efficient intracellular transduction in three-dimensional gradients for programming cell fate. Acta Biomaterialia, 2016, 41, 181-192.	4.1	22
31	Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E291-9.	3.3	88
32	Thermoresponsive magnetic colloidal gels via surface-initiated polymerisation from functional microparticles. Journal of Materials Chemistry B, 2016, 4, 962-972.	2.9	5
33	Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing. Biofabrication, 2016, 8, 015016.	3.7	37
34	In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors. PLoS ONE, 2015, 10, e0145080.	1.1	67
35	Precision Assembly of Complex Cellular Microenvironments using Holographic Optical Tweezers. Scientific Reports, 2015, 5, 8577.	1.6	88
36	Neuralization of mouse embryonic stem cells in alginate hydrogels under retinoic acid and SAG		3

treatment., 2015, 2015, 3525-8.

#	Article	IF	CITATIONS
37	The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies. Journal of Pharmacy and Pharmacology, 2015, 67, 640-650.	1.2	70
38	Serum protein layers on parylene-C and silicon oxide: Effect on cell adhesion. Colloids and Surfaces B: Biointerfaces, 2015, 126, 169-177.	2.5	24
39	Evaluation of nanostructure and microstructure of bone regenerated by BMPâ€2â€porous scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 2998-3011.	2.1	10
40	Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication, 2015, 7, 035004.	3.7	94
41	An automated fabrication strategy to create patterned tubular architectures at cell and tissue scales. Biofabrication, 2015, 7, 025003.	3.7	22
42	Evaluation of a Thermoresponsive Polycaprolactone Scaffold for In Vitro Three-Dimensional Stem Cell Differentiation. Tissue Engineering - Part A, 2015, 21, 310-319.	1.6	12
43	A Thermoresponsive and Magnetic Colloid for 3D Cell Expansion and Reconfiguration. Advanced Materials, 2015, 27, 662-668.	11.1	16
44	The scale-up of a tissue engineered porous hydroxyapatite polymer composite scaffold for use in bone repair: An ovine femoral condyle defect study. Journal of Biomedical Materials Research - Part A, 2015, 103, 1346-1356.	2.1	14
45	Dental pulp stem cells: function, isolation and applications in regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1205-1216.	1.3	247
46	The Effects of 1α, 25-dihydroxyvitamin D3 and Transforming Growth Factor-β3 on Bone Development in an Ex Vivo Organotypic Culture System of Embryonic Chick Femora. PLoS ONE, 2015, 10, e0121653.	1.1	12
47	Surgical delivery of drug releasing poly(lactic- <i>co</i> -glycolic acid)/poly(ethylene glycol) paste with in vivo effects against glioblastoma. Annals of the Royal College of Surgeons of England, 2014, 96, 495-501.	0.3	11
48	Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5580-5585.	3.3	67
49	A comparison of polymer and polymer–hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An <i>in vitro</i> and <i>in vivo</i> study. Journal of Biomedical Materials Research - Part A, 2014, 102, 2613-2624.	2.1	47
50	Biocompatibility and enhanced osteogenic differentiation of human mesenchymal stem cells in response to surface engineered poly(<scp>d</scp> , <scp>l</scp> -lactic- <i>co</i> glycolic acid) microparticles. Journal of Biomedical Materials Research - Part A, 2014, 102, 3872-3882.	2.1	6
51	Controlled release of BMP-2 from a sintered polymer scaffold enhances bone repair in a mouse calvarial defect model. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 59-66.	1.3	86
52	Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature. Acta Biomaterialia, 2014, 10, 5090-5098.	4.1	94
53	A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing. Biofabrication, 2014, 6, 035003.	3.7	48
54	Surface engineering of synthetic polymer materials for tissue engineering and regenerative medicine applications. Biomaterials Science, 2014, 2, 1318-1331.	2.6	58

#	Article	IF	CITATIONS
55	Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model. Acta Biomaterialia, 2014, 10, 4186-4196.	4.1	57
56	Remotely Activated Mechanotransduction via Magnetic Nanoparticles Promotes Mineralization Synergistically With Bone Morphogenetic Protein 2: Applications for Injectable Cell Therapy. Stem Cells Translational Medicine, 2014, 3, 1363-1374.	1.6	79
57	Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. Polymer, 2014, 55, 435-444.	1.8	56
58	Evaluation of skeletal tissue repair, Part 2: Enhancement of skeletal tissue repair through dual-growth-factor-releasing hydrogels within an ex vivo chick femur defect model. Acta Biomaterialia, 2014, 10, 4197-4205.	4.1	56
59	A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model. , 2014, 27, 332-349.		52
60	Tissue engineered bone using select growth factors: A comprehensive review of animal studies and clinical translation studies in man. , 2014, 28, 166-208.		149
61	Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomaterialia, 2013, 9, 7865-7873.	4.1	224
62	Porous Copolymers of ε-Caprolactone as Scaffolds for Tissue Engineering. Macromolecules, 2013, 46, 8136-8143.	2.2	35
63	Mannan binding lectin-associated serine protease 1 is induced by hepatitis C virus infection and activates human hepatic stellate cells. Clinical and Experimental Immunology, 2013, 174, 265-273.	1.1	25
64	Development of a porous poly(DLâ€lactic acidâ€coâ€glycolic acid)â€based scaffold for mastoid airâ€cell regeneration. Laryngoscope, 2013, 123, 3156-3161.	1.1	9
65	Gelation of microsphere dispersions using a thermally-responsive graft polymer. Journal of Colloid and Interface Science, 2013, 396, 187-196.	5.0	7
66	The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system. Biomaterials, 2013, 34, 9352-9364.	5.7	43
67	Accelerating protein release from microparticles for regenerative medicine applications. Materials Science and Engineering C, 2013, 33, 2578-2583.	3.8	45
68	Rheological studies of polycaprolactone in supercritical CO2. European Polymer Journal, 2013, 49, 464-470.	2.6	16
69	Delivery of definable number of drug or growth factor loaded poly(dl-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates. Journal of Controlled Release, 2013, 168, 18-27.	4.8	31
70	PLGA/PEGâ€hydrogel composite scaffolds with controllable mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 648-655.	1.6	49
71	Drug delivery to the ear. Therapeutic Delivery, 2013, 4, 115-124.	1.2	31
72	Hollow Colloidosomes Prepared Using Accelerated Solvent Evaporation. Langmuir, 2013, 29, 13676-13685.	1.6	8

#	Article	IF	CITATIONS
73	Adjuvant Chemotherapy for Brain Tumors Delivered via a Novel Intra-Cavity Moldable Polymer Matrix. PLoS ONE, 2013, 8, e77435.	1.1	25
74	Gelatin embedding for the preparation of thermoreversible or delicate scaffolds for histological analysis. Biomedical Materials (Bristol), 2013, 8, 041001.	1.7	5
75	3D Cell and Scaffold Patterning Strategies in Tissue Engineering. Recent Patents on Biomedical Engineering, 2013, 6, 3-21.	0.5	16
76	Supercritical Fluid Processing of Materials for Regenerative Medicine. Recent Patents on Regenerative Medicine, 2013, 3, 237-248.	0.4	4
77	Biofilm Eradication With Biodegradable Modified-Release Antibiotic Pellets. JAMA Otolaryngology, 2012, 138, 942.	1.5	20
78	Tissue Engineering in the Development of Replacement Technologies. Advances in Experimental Medicine and Biology, 2012, 745, 47-57.	0.8	5
79	Dynamics of anterior–posterior axis formation in the developing mouse embryo. Nature Communications, 2012, 3, 673.	5.8	86
80	Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials, 2012, 33, 7435-7446.	5.7	126
81	Early gene regulation of osteogenesis in embryonic stem cells. Integrative Biology (United Kingdom), 2012, 4, 1470.	0.6	4
82	Chemistry of Polymer and Ceramic-Based Injectable Scaffolds and Their Applications in Regenerative Medicine. Chemistry of Materials, 2012, 24, 781-795.	3.2	28
83	Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications. Journal of Controlled Release, 2012, 162, 321-329.	4.8	56
84	The biology of equine mesenchymal stem cells: phenotypic characterization, cell surface markers and multilineage differentiation. Frontiers in Bioscience - Landmark, 2012, 17, 892.	3.0	25
85	Aggregation promotes cell viability, proliferation, and differentiation in an <i>in vitro</i> model of injection cell therapy. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e61-e73.	1.3	26
86	Viscosity studies of poly(<scp>DL</scp> â€lactic acid) in supercritical CO ₂ . Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1383-1393.	2.4	27
87	An analysis of polymer type and chain length for use as a biological composite graft extender in impaction bone grafting: A mechanical and biocompatibility study. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3211-3219.	2.1	9
88	Supercritical CO ₂ : A Clean and Low Temperature Approach to Blending P _{DL} LA and PEG. Advanced Functional Materials, 2012, 22, 1684-1691.	7.8	31
89	Rapid micropatterning of cell lines and human pluripotent stem cells on elastomeric membranes. Biotechnology and Bioengineering, 2012, 109, 2630-2641.	1.7	19
90	The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomaterialia, 2012, 8, 61-71.	4.1	101

#	ARTICLE	IF	CITATIONS
91	Supercritical CO2 fluid-foaming of polymers to increase porosity: A method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?. Acta Biomaterialia, 2012, 8, 1918-1927.	4.1	31
92	Interconnectivity analysis of supercritical CO2-foamed scaffolds. Computer Methods and Programs in Biomedicine, 2012, 106, 139-149.	2.6	17
93	Engineering an in-vitro model of rodent cartilage. Journal of Pharmacy and Pharmacology, 2012, 64, 821-831.	1.2	0
94	Direct Fabrication as a Patient-Targeted Therapeutic in a Clinical Environment. Methods in Molecular Biology, 2012, 868, 327-340.	0.4	4
95	Thermally Triggered Assembly of Cationic Graft Copolymers Containing 2-(2-Methoxyethoxy)ethyl Methacrylate Side Chains. Langmuir, 2011, 27, 13868-13878.	1.6	10
96	Osteogenic Differentiation of Embryonic Stem Cells in 2D and 3D Culture. Methods in Molecular Biology, 2011, 695, 281-308.	0.4	10
97	Directed Differentiation of Human Embryonic Stem Cells to Interrogate the Cardiac Gene Regulatory Network. Molecular Therapy, 2011, 19, 1695-1703.	3.7	46
98	Scaffolds containing growth factors and extracellular matrix induce hepatocyte proliferation and cell migration in normal and regenerating rat liver. Journal of Hepatology, 2011, 54, 279-287.	1.8	60
99	PE-CVD processes improve cell affinity of polymer scaffolds for tissue engineering. Surface and Coatings Technology, 2011, 205, S548-S551.	2.2	25
100	Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing. Journal of Materials Science: Materials in Medicine, 2011, 22, 2599-2605.	1.7	30
101	Uniform cell colonization of porous 3-D scaffolds achieved using radial control of surface chemistry. Acta Biomaterialia, 2011, 7, 3336-3344.	4.1	37
102	PLGA-Based Microparticles for the Sustained Release of BMP-2. Polymers, 2011, 3, 571-586.	2.0	59
103	Growth factor release from tissue engineering scaffolds. Journal of Pharmacy and Pharmacology, 2010, 53, 1427-1437.	1.2	234
104	Incorporation of proteins within alginate fibre-based scaffolds using a post-fabrication entrapment methodâ€. Journal of Pharmacy and Pharmacology, 2010, 58, 895-902.	1.2	8
105	Gene therapy used for tissue engineering applicationsâ€. Journal of Pharmacy and Pharmacology, 2010, 59, 329-350.	1.2	51
106	Non-local models for the formation of hepatocyte–stellate cell aggregates. Journal of Theoretical Biology, 2010, 267, 106-120.	0.8	37
107	Thermally-triggered gelation of PLGA dispersions: Towards an injectable colloidal cell delivery system. Journal of Colloid and Interface Science, 2010, 344, 61-69.	5.0	29
108	Studies on the interactions of CO2 with biodegradable poly(dl-lactic acid) and poly(lactic) Tj ETQq0 0 0 rgBT /Ove	erlock 10 ⁻ 1.8	rf 50 67 Td (43

2010, 51, 1425-1431.

#	Article	IF	CITATIONS
109	Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Acta Biomaterialia, 2010, 6, 130-136.	4.1	62
110	The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials, 2010, 31, 1242-1250.	5.7	214
111	Engineering Embryonic Stem-Cell Aggregation Allows an Enhanced Osteogenic Differentiation In Vitro. Tissue Engineering - Part C: Methods, 2010, 16, 583-595.	1.1	19
112	The visualisation of vitreous using surface modified poly(lactic-co-glycolic acid) microparticles. British Journal of Ophthalmology, 2010, 94, 648-653.	2.1	3
113	Combination of Injectable Multiple Growth Factor–Releasing Scaffolds and Cell Therapy as an Advanced Modality to Enhance Tissue Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1897-1904.	1.1	85
114	Label-free molecular imaging of immunological synapses between dendritic and T cells by Raman micro-spectroscopy. Analyst, The, 2010, 135, 3205.	1.7	32
115	Responsive particulate dispersions for reversible building and deconstruction of 3D cell environments. Soft Matter, 2010, 6, 5037.	1.2	18
116	Laminin and Fibronectin Treatment Leads to Generation of Dendritic Cells with Superior Endocytic Capacity. PLoS ONE, 2010, 5, e10123.	1.1	42
117	Replacing animal models of osteoarthritis with 3â€dimensional models of articular cartilage and synovium. FASEB Journal, 2010, 24, lb11.	0.2	0
118	Engineering tissue alternatives to animals: applying tissue engineering to basic research and safety testing. Regenerative Medicine, 2009, 4, 579-592.	0.8	33
119	The effect of delivery via narrow-bore needles on mesenchymal cells. Regenerative Medicine, 2009, 4, 49-64.	0.8	55
120	Biodegradable Thermoresponsive Microparticle Dispersions for Injectable Cell Delivery Prepared Using a Singleâ€ S tep Process. Advanced Materials, 2009, 21, 1809-1813.	11.1	53
121	Timeâ€lapsed imaging for inâ€process evaluation of supercritical fluid processing of tissue engineering scaffolds. Biotechnology Progress, 2009, 25, 1176-1183.	1.3	6
122	Formulations for delivery of therapeutic proteins. Biotechnology Letters, 2009, 31, 1-11.	1.1	49
123	Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomaterialia, 2009, 5, 2063-2071.	4.1	68
124	Controlled embryoid body formation via surface modification and avidin–biotin cross-linking. Cytotechnology, 2009, 61, 135-144.	0.7	22
125	A Mathematical Model of Liver Cell Aggregation In Vitro. Bulletin of Mathematical Biology, 2009, 71, 906-930.	0.9	28
126	Attachment of stem cells to scaffold particles for intra-cerebral transplantation. Nature Protocols, 2009, 4, 1440-1453.	5.5	75

8

#	Article	IF	CITATIONS
127	The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials, 2009, 30, 2985-2994.	5.7	195
128	Thermoresponsive and Photocrosslinkable PEGMEMA-PPGMA-EGDMA Copolymers from a One-Step ATRP Synthesis. Biomacromolecules, 2009, 10, 822-828.	2.6	73
129	Photo-Cross-Linked Hydrogels from Thermoresponsive PEGMEMA-PPGMA-EGDMA Copolymers Containing Multiple Methacrylate Groups: Mechanical Property, Swelling, Protein Release, and Cytotoxicity. Biomacromolecules, 2009, 10, 2895-2903.	2.6	69
130	Manipulation of live mouse embryonic stem cells using holographic optical tweezers. Journal of Modern Optics, 2009, 56, 448-452.	0.6	18
131	Remedi: A Research Consortium Applying Engineering Strategies to Establish Regenerative Medicine as a New Industry. IFMBE Proceedings, 2009, , 2209-2212.	0.2	0
132	A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair. Biomaterials, 2008, 29, 272-281.	5.7	83
133	Ultrasonic monitoring of foamed polymeric tissue scaffold fabrication. Journal of Materials Science: Materials in Medicine, 2008, 19, 3071-3080.	1.7	14
134	Sorption and swelling of poly(<scp>DL</scp> â€lactic acid) and poly(lacticâ€ <i>co</i> â€glycolic acid) in supercritical CO ₂ : An experimental and modeling study. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 483-496.	2.4	67
135	In Situ Gelling Hydrogels Incorporating Microparticles as Drug Delivery Carriers for Regenerative Medicine. Journal of Pharmaceutical Sciences, 2008, 97, 3972-3980.	1.6	43
136	In situ monitoring of 3D in vitro cell aggregation using an optical imaging system. Biotechnology and Bioengineering, 2008, 100, 159-167.	1.7	16
137	The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Biomaterials, 2008, 29, 1892-1900.	5.7	138
138	A supercritical CO2 injection system for the production of polymer/mammalian cell composites. Journal of Supercritical Fluids, 2008, 43, 535-541.	1.6	24
139	The application of human bone marrow stromal cells and poly(dl-lactic acid) as a biological bone grafting. Biomaterials, 2008, 29, 3221-3227.	5.7	44
140	Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Advanced Drug Delivery Reviews, 2008, 60, 373-387.	6.6	254
141	Tissue engineering: strategies, stem cells and scaffolds. Journal of Anatomy, 2008, 213, 66-72.	0.9	417
142	Controlling protein release from scaffolds using polymer blends and composites. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 82-89.	2.0	53
143	Microparticles as tissue engineering scaffolds: Manufacture, modification and manipulation. Materials Science and Technology, 2008, 24, 1031-1044.	0.8	19
144	Clinical applications of musculoskeletal tissue engineering. British Medical Bulletin, 2008, 86, 7-22.	2.7	39

#	Article	IF	CITATIONS
145	Poly(<scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -glycolide) Dispersions Containing Pluronics: from Particle Preparation to Temperature-Triggered Aggregation. Langmuir, 2008, 24, 7761-7768.	1.6	19
146	Image-based characterization of foamed polymeric tissue scaffolds. Biomedical Materials (Bristol), 2008, 3, 015011.	1.7	35
147	Efficient assessment of the utility of immortalized Fa2N-4 cells for cytochrome P450 (CYP) induction studies using multiplex quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and substrate cassette methodologies. Xenobiotica, 2008, 38, 1500-1517.	0.5	24
148	A Brief Introduction to Different Cell Types. , 2008, , 15-41.		0
149	The Intercostal NMJ Assay — A New Alternative to the Conventional LD50 Assay for the Determination of the Therapeutic Potency of Botulinum Toxin Preparations. ATLA Alternatives To Laboratory Animals, 2008, 36, 141-152.	0.7	10
150	Aggregation of Cells Using Biomaterials and Bioreactors. , 2008, , 313-331.		0
151	Direct calculation of Maxwell stress tensor for accurate trajectory prediction during DEP for 2D and 3D structures. Journal Physics D: Applied Physics, 2007, 40, 71-77.	1.3	33
152	Putting the fizz into chemistry: applications of supercritical carbon dioxide in tissue engineering, drug delivery and synthesis of novel block copolymers. Biochemical Society Transactions, 2007, 35, 516-521.	1.6	59
153	Sorption and Swelling of Poly(D,L″actic acid) and Poly(lacticâ€coâ€glycolic acid) in Supercritical CO ₂ . Macromolecular Symposia, 2007, 259, 197-202.	0.4	14
154	Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(dl-lactic acid) scaffolds induce angiogenesis in vitro. Biochemical and Biophysical Research Communications, 2007, 352, 135-141.	1.0	84
155	Synthesis and Characterization of Novel Poly[(organo)phosphazenes] with Cell-Adhesive Side Groups. Biomacromolecules, 2007, 8, 1436-1445.	2.6	31
156	Accelerated formation of multicellular 3-D structures by cell-to-cell cross-linking. Biotechnology and Bioengineering, 2007, 97, 1617-1625.	1.7	37
157	Development of a slow non-viral DNA release system from PDLLA scaffolds fabricated using a supercritical CO2 technique. Biotechnology and Bioengineering, 2007, 98, 679-693.	1.7	30
158	Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomaterialia, 2007, 3, 457-462.	4.1	99
159	One dose or two? The use of polymers in drug delivery. Polymer International, 2007, 56, 1457-1460.	1.6	7
160	Polymer carriers for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 2007, 59, 187-206.	6.6	400
161	Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfibre arrays. , 2007, 14, 56-63.		45
162	Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. , 2007, 14, 64-77.		200

#	Article	IF	CITATIONS
163	Encapsulation of RIN-m5F cells within Ba2+cross-linked alginate beads affects proliferation and insulin secretion. Journal of Microencapsulation, 2006, 23, 663-676.	1.2	12
164	Calcium-binding phospholipids as a coating material for implant osteointegration. Journal of the Royal Society Interface, 2006, 3, 277-281.	1.5	23
165	Comparison of Primary Rat Hepatocyte Attachment to Collagen and Plasma-Polymerised Allylamine on Glass. Plasma Processes and Polymers, 2006, 3, 474-484.	1.6	19
166	Promotion of Human Dermal Fibroblast Migration, Matrix Remodelling and Modification of Fibroblast Morphology within a Novel 3D Model by Lucilia sericata Larval Secretions. Journal of Investigative Dermatology, 2006, 126, 1410-1418.	0.3	70
167	The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials, 2006, 27, 5909-5917.	5.7	201
168	Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide. European Polymer Journal, 2006, 42, 3145-3151.	2.6	119
169	Surface spectroscopic imaging of PEG-PLA tissue engineering constructs with ToF-SIMS. Applied Surface Science, 2006, 252, 6693-6696.	3.1	7
170	Zonal release of proteins within tissue engineering scaffolds. Journal of Materials Science: Materials in Medicine, 2006, 17, 1049-1056.	1.7	37
171	Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. Journal of Mathematical Biology, 2006, 52, 571-594.	0.8	110
172	Responsive Polymers at the Biology/Materials Science Interface. Advanced Materials, 2006, 18, 3321-3328.	11.1	190
173	Using a Core–Sheath Distribution of Surface Chemistry through 3D Tissue Engineering Scaffolds to Control Cell Ingress. Advanced Materials, 2006, 18, 1406-1410.	11.1	95
174	Tissue growth in a rotating bioreactor. Part I: mechanical stability. Mathematical Medicine and Biology, 2006, 23, 311-337.	0.8	33
175	Scaffolds for liver tissue engineering. Expert Review of Medical Devices, 2006, 3, 21-27.	1.4	45
176	Supercritical carbon dioxide: putting the fizz into biomaterials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 249-261.	1.6	70
177	Mammalian cell survival and processing in supercritical CO2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7426-7431.	3.3	45
178	Hepatic stellate cells on poly(DL-lactic acid) surfaces control the formation of 3D hepatocyte co-culture aggregates in vitro. , 2006, 11, 16-26.		31
179	The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials, 2005, 26, 697-702.	5.7	162
180	Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon the migration of human dermal fibroblasts over a fibronectin-coated surface. Wound Repair and Regeneration, 2005, 13, 422-433.	1.5	89

#	Article	IF	CITATIONS
181	The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. Journal of Controlled Release, 2005, 101, 85-92.	4.8	100
182	Using Plasma Deposits to Promote Cell Population of the Porous Interior of Three-Dimensional Poly(D,L-Lactic Acid) Tissue-Engineering Scaffolds. Advanced Functional Materials, 2005, 15, 1134-1140.	7.8	109
183	Three-Dimensional Bioactive and Biodegradable Scaffolds Fabricated by Surface-Selective Laser Sintering. Advanced Materials, 2005, 17, 327-330.	11.1	130
184	Drug delivery goes supercritical. Materials Today, 2005, 8, 42-48.	8.3	91
185	Surface characterization of pre-formed alginate fibres incorporated with a protein by a novel entrapment process. Surface and Interface Analysis, 2005, 37, 1077-1081.	0.8	3
186	Altered cellular response to adsorbed matrix protein by chemoselective ligation of small molecules. Journal of Materials Chemistry, 2005, 15, 2047.	6.7	1
187	Supercritical fluid assisted melting of poly(ethylene glycol): a new solvent-free route to microparticles. Journal of Materials Chemistry, 2005, 15, 1148.	6.7	29
188	Novel Surface Entrapment Process for the Incorporation of Bioactive Molecules within Preformed Alginate Fibers. Biomacromolecules, 2005, 6, 734-740.	2.6	13
189	The Effect of Three-Dimensional Co-Culture of Hepatocytes and Hepatic Stellate Cells on Key Hepatocyte Functions in vitro. Cells Tissues Organs, 2005, 181, 67-79.	1.3	118
190	Plasticization and spraying of poly (DLâ€lactic acid) using supercritical carbon dioxide: control of particle size. Journal of Pharmaceutical Sciences, 2004, 93, 1083-1090.	1.6	38
191	Chemical Modification of Mammalian Cell Surfaces. ChemInform, 2004, 35, no.	0.1	0
192	Injectable Scaffolds for Tissue Regeneration. ChemInform, 2004, 35, no.	0.1	1
193	In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials, 2004, 25, 5507-5514.	5.7	133
194	Human Osteoprogenitor Bone Formation Using Encapsulated Bone Morphogenetic Protein 2 in Porous Polymer Scaffolds. Tissue Engineering, 2004, 10, 1037-1045.	4.9	109
195	Supercritical fluid technologies and tissue engineering scaffolds. Current Opinion in Solid State and Materials Science, 2004, 8, 313-321.	5.6	197
196	Materials processing in supercritical carbon dioxide: surfactants, polymers and biomaterialsElectronic supplementary information (ESI) available: video clips relating to work carried out in the Howdle research group. See http://www.rsc.org/suppdata/jm/b3/b315262f/. Journal of Materials Chemistry, 2004, 14, 1663.	6.7	252
197	Injectable scaffolds for tissue regeneration. Journal of Materials Chemistry, 2004, 14, 1915.	6.7	265
198	α-MSH inhibits inflammatory signalling in Schwann cells. NeuroReport, 2004, 15, 493-498.	0.6	37

#	Article	IF	CITATIONS
199	Human Osteoprogenitor Bone Formation Using Encapsulated Bone Morphogenetic Protein 2 in Porous Polymer Scaffolds. Tissue Engineering, 2004, 10, 1037-1045.	4.9	78
200	A simple method for the simultaneous isolation of stellate cells and hepatocytes from rat liver tissue. Molecular and Cellular Biochemistry, 2003, 248, 97-102.	1.4	75
201	Induction of Human Osteoprogenitor Chemotaxis, Proliferation, Differentiation, and Bone Formation by Osteoblast Stimulating Factor-1/Pleiotrophin: Osteoconductive Biomimetic Scaffolds for Tissue Engineering. Journal of Bone and Mineral Research, 2003, 18, 47-57.	3.1	149
202	Seeding cells into needled felt scaffolds for tissue engineering applications. Journal of Biomedical Materials Research Part B, 2003, 66A, 425-431.	3.0	27
203	Porous Polymer and Cell Composites That Self-Assemble In Situ. Advanced Materials, 2003, 15, 210-213.	11.1	103
204	Cell-Type-Specific adhesion onto polymer surfaces from mixed cell populations. Biotechnology and Bioengineering, 2003, 81, 625-628.	1.7	17
205	Surface engineering of living myoblasts via selective periodate oxidation. Biotechnology and Bioengineering, 2003, 81, 800-808.	1.7	81
206	Development of a bioluminescent ATP assay to quantify mammalian and bacterial cell number from a mixed population. Biomaterials, 2003, 24, 27-34.	5.7	31
207	Maggots and wound healing: an investigation of the effects of secretions fromLucilia sericatalarvae upon interactions between human dermal fibroblasts and extracellular matrix components. British Journal of Dermatology, 2003, 148, 923-933.	1.4	78
208	Long-Term Culture of Functional Liver Tissue: Three-Dimensional Coculture of Primary Hepatocytes and Stellate Cells. Tissue Engineering, 2003, 9, 401-410.	4.9	100
209	Micro- and Macrothermal Analysis of a Bioactive Surface-Engineered Polymer Formed by Physical Entrapment of Poly(ethylene glycol) into Poly(lactic acid). Macromolecules, 2003, 36, 1215-1221.	2.2	22
210	Novel Osteoinductive Biomimetic Scaffolds Stimulate Human Osteoprogenitor ActivityImplications for Skeletal Repair. Connective Tissue Research, 2003, 44, 312-317.	1.1	19
211	Chemical modification of mammalian cell surfaces. Chemical Society Reviews, 2003, 32, 327.	18.7	94
212	Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15895-15900.	3.3	161
213	Spatial Confinement of Neurite Regrowth from Dorsal Root Ganglia within Nonporous Microconduits. Tissue Engineering, 2003, 9, 201-208.	4.9	20
214	α-MSH inhibits inflammatory signalling in olfactory ensheathing cells. NeuroReport, 2003, 14, 2171-2176.	0.6	19
215	Adenoviral BMP-2 Gene Transfer in Mesenchymal Stem Cells: In Vitro and in Vivo Bone Formation on Biodegradable Polymer Scaffolds. Biochemical and Biophysical Research Communications, 2002, 292, 144-152.	1.0	160
216	Immunoselection and adenoviral genetic modulation of human osteoprogenitors: in vivo bone formation on PLA scaffold. Biochemical and Biophysical Research Communications, 2002, 299, 208-215.	1.0	88

#	Article	IF	CITATIONS
217	Incorporation of Proteins into Polymer Materials by a Novel Supercritical Fluid Processing Method. Advanced Materials, 2002, 14, 1802-1804.	11.1	59
218	Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. Journal of Biomedical Materials Research Part B, 2002, 61, 212-217.	3.0	195
219	Recent Advances in Tissue Engineering: An Invited Review. Journal of Long-Term Effects of Medical Implants, 2002, 12, 33.	0.2	20
220	Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials. Chemical Communications, 2001, , 109-110.	2.2	191
221	Liver Tissue Engineering: A Role for Co-culture Systems in Modifying Hepatocyte Function and Viability. Tissue Engineering, 2001, 7, 345-357.	4.9	160
222	Synthesis and Characterisation of a Degradable Poly(lactic acid)â^'Poly(ethylene glycol) Copolymer with Biotinylated End Groups. Biomacromolecules, 2001, 2, 575-580.	2.6	81
223	Controlling Biological Interactions with Poly(lactic acid) by Surface Entrapment Modification. Langmuir, 2001, 17, 2817-2820.	1.6	66
224	Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone, 2001, 29, 523-531.	1.4	249
225	Poly(l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials, 2001, 22, 865-872.	5.7	216
226	Characterization of the spatial distributions of entrapped polymers following the surface engineering of poly(lactic acid). Surface and Interface Analysis, 2001, 31, 46-50.	0.8	12
227	A comparison of the adhesion of mammalian cells andStaphylococcus epidermidis on fibronectin-modified polymer surfaces. Journal of Biomedical Materials Research Part B, 2001, 56, 222-227.	3.0	30
228	Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials, 2000, 21, 1823-1835.	5.7	472
229	Printing patterns of biospecifically-adsorbed protein. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 319-331.	1.9	61
230	Surface Engineering of Poly(lactic acid) by Entrapment of Modifying Species. Macromolecules, 2000, 33, 258-260.	2.2	82
231	Surface Engineering and Surface Analysis of a Biodegradable Polymer with Biotinylated End Groups. Langmuir, 1999, 15, 3157-3161.	1.6	83
232	Atomic Force Microscopic Analysis of Highly Defined Protein Patterns Formed by Microfluidic Networks. Langmuir, 1999, 15, 7252-7257.	1.6	36
233	Polymeric Systems for Controlled Drug Release. Chemical Reviews, 1999, 99, 3181-3198.	23.0	2,390
234	Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. Journal of Controlled Release, 1998, 51, 143-152.	4.8	138

#	Article	lF	CITATIONS
235	A novel biotinylated degradable polymer for cell-interactive applications. , 1998, 58, 529-535.		104
236	Chemical and Morphological Analysis of Surface Enrichment in a Biodegradable Polymer Blend by Phase-Detection Imaging Atomic Force Microscopy. Macromolecules, 1998, 31, 2278-2283.	2.2	77
237	Creating biomimetic micro-environments with synthetic polymer-peptide hybrid molecules. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 507-518.	1.9	114
238	Spatially controlled cell engineering on biodegradable polymer surfaces. FASEB Journal, 1998, 12, 1447-1454.	0.2	238
239	The Adsorption of Poly(vinyl alcohol) to Biodegradable Microparticles Studied by X-Ray Photoelectron Spectroscopy (XPS). Journal of Colloid and Interface Science, 1997, 185, 538-547.	5.0	126
240	Dynamic Surface Events Measured by Simultaneous Probe Microscopy and Surface Plasmon Detection. Analytical Chemistry, 1996, 68, 1451-1455.	3.2	27
241	The Role of Scanning Probe Microscopy in Drug Delivery Research. Critical Reviews in Therapeutic Drug Carrier Systems, 1996, 13, 225-256.	1.2	10
242	Relating the phase morphology of a biodegradable polymer blend to erosion kinetics using simultaneous in situ atomic force microscopy and surface plasmon resonance analysis. Langmuir, 1995, 11, 3921-3927.	1.6	38