Roberto Merletti

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8729884/roberto-merletti-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

116 papers

6,577 citations

43 h-index 80 g-index

121 ext. papers

7,467 ext. citations

3.1 avg, IF

5.86 L-index

#	Paper	IF	Citations
116	Consensus for experimental design in electromyography (CEDE) project: High-density surface electromyography matrix <i>Journal of Electromyography and Kinesiology</i> , 2022 , 64, 102656	2.5	4
115	Fundamental Concepts of Bipolar and High-Density Surface EMG Understanding and Teaching for Clinical, Occupational, and Sport Applications: Origin, Detection, and Main Errors. <i>Sensors</i> , 2022 , 22, 415	∂ .8	4
114	High Density Surface Electromyography Activity of the Lumbar Erector Spinae Muscles and Comfort/Discomfort Assessment in Piano Players: Comparison of Two Chairs <i>Frontiers in Physiology</i> , 2021 , 12, 743730	4.6	O
113	Monitoring Involuntary Muscle Activity in Acute Patients with Upper Motor Neuron Lesion by Wearable Sensors: A Feasibility Study. <i>Sensors</i> , 2021 , 21,	3.8	2
112	Consensus for experimental design in electromyography (CEDE) project: Terminology matrix. Journal of Electromyography and Kinesiology, 2021 , 59, 102565	2.5	8
111	Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. <i>Journal of Electromyography and Kinesiology</i> , 2020 , 53, 102438	2.5	64
110	High-density surface electromyography signals during isometric contractions of elbow muscles of healthy humans. <i>Scientific Data</i> , 2020 , 7, 397	8.2	3
109	Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. <i>Frontiers in Neurology</i> , 2020 , 11, 934	4.1	44
108	Mathematical Techniques for Noninvasive Muscle Signal Analysis and Interpretation 2019 , 95-111		
107	Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix. <i>Journal of Electromyography and Kinesiology</i> , 2019 , 48, 128-144	2.5	43
106	Surface Electromyography (sEMG) 2018 , 1-22		3
105	Comparison of chairs based on HDsEMG of back muscles, biomechanical and comfort indices, for violin and viola players: A short-term study. <i>Journal of Electromyography and Kinesiology</i> , 2018 , 42, 92-10	3 ^{.5}	5
104	Analysis of High-Density Surface EMG and Finger Pressure in the Left Forearm of Violin Players: A Feasibility Study. <i>Medical Problems of Performing Artists</i> , 2017 , 32, 139-151	0.6	3
103	Detection and Conditioning of Surface EMG Signals 2016 , 1-37		7
102	Surface EMG Decomposition 2016 , 180-209		2
101	EMG of Electrically Stimulated Muscles 2016 , 311-332		3
100	Surface EMG in Ergonomics and Occupational Medicine 2016 , 361-391		5

Applications in Proctology and Obstetrics 2016, 392-407 1 99 EMG and Posture in Its Narrowest Sense 2016, 408-439 98 EMG in Exercise Physiology and Sports 2016, 501-539 97 4 Techniques for Information Extraction from the Surface EMG Signalhigh-Density Surface EMG 2016, 126-157 96 Spatial distribution of surface EMG on trapezius and lumbar muscles of violin and cello players in 2.5 95 13 single note playing. Journal of Electromyography and Kinesiology, 2016, 31, 144-153 The correct episiotomy: Does it exist?. International Urogynecology Journal, 2016, 27, 161-2 94 2 Pelvic Floor EMG: Principles, Techniques, and Applications 2016, 83-99 93 2 Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface 92 62 EMG Decomposition. IEEE Transactions on Biomedical Engineering, 2015, 62, 1242-52 Reply to De Luca, Nawab, and Kline: The proposed method to validate surface EMG signal 91 3.7 12 decomposition remains problematic. Journal of Applied Physiology, 2015, 118, 1085 Characterization of the motor units of the external anal sphincter in pregnant women with 90 17 multichannel surface EMG. International Urogynecology Journal, 2014, 25, 1097-103 Effect of vaginal delivery on the external anal sphincter muscle innervation pattern evaluated by multichannel surface EMG: results of the multicentre study TASI-2. International Urogynecology 89 2 32 Journal, **2014**, 25, 1491-9 Automatic detection of motor unit innervation zones of the external anal sphincter by multichannel 88 2.5 26 surface EMG. Journal of Electromyography and Kinesiology, **2014**, 24, 860-7 The extraction of neural strategies from the surface EMG: an update. Journal of Applied Physiology, 87 3.7 252 2014, 117, 1215-30 Compression of high-density EMG signals for trapezius and gastrocnemius muscles. BioMedical 86 4.1 Engineering OnLine, **2014**, 13, 25 Uneven spatial distribution of surface EMG: what does it mean?. European Journal of Applied 85 32 3.4 Physiology, 2013, 113, 887-94 Design of a portable, intrinsically safe multichannel acquisition system for high-resolution, 84 5 20 real-time processing HD-sEMG. IEEE Transactions on Biomedical Engineering, 2013, 60, 2242-52 Motor unit firing pattern of vastus lateralis muscle in type 2 diabetes mellitus patients. Muscle and 83 3.4 37 Nerve, 2013, 48, 806-13 Multi-channel electromyography during maximal isometric and dynamic contractions. Journal of 82 2.5 11 Electromyography and Kinesiology, **2013**, 23, 302-10

81	Do surface electromyograms provide physiological estimates of conduction velocity from the medial gastrocnemius muscle?. <i>Journal of Electromyography and Kinesiology</i> , 2013 , 23, 319-25	2.5	15
80	Surface Electromyogram Detection 2013 , 113-136		
79	Outlier detection in high-density surface electromyographic signals. <i>Medical and Biological Engineering and Computing</i> , 2012 , 50, 79-89	3.1	36
78	Spatial EMG potential distribution pattern of vastus lateralis muscle during isometric knee extension in young and elderly men. <i>Journal of Electromyography and Kinesiology</i> , 2012 , 22, 74-9	2.5	40
77	Atlas of Muscle Innervation Zones 2012 ,		153
76	Surface electromyography features in manual workers affected by carpal tunnel syndrome. <i>Muscle and Nerve</i> , 2012 , 45, 873-82	3.4	5
75	Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: is recruitment intermittent? What triggers recruitment?. <i>Journal of Neurophysiology</i> , 2012 , 107, 666-76	3.2	44
74	Applications of sEMG in Dynamic Conditions, Ergonomics, Sports, and Obstetrics 2012 , 71-79		
73	Features of the Two-Dimensional sEMG Signal: EMG Feature Imaging 2012 , 61-69		
72	EMG Imaging: Geometry and Anatomy of the Electrode-Muscle System 2012 , 39-47		
71	Reliability of surface EMG matrix in locating the innervation zone of upper trapezius muscle. <i>Journal of Electromyography and Kinesiology</i> , 2011 , 21, 827-33	2.5	22
70	Spinal involvement and muscle cramps in electrically elicited muscle contractions. <i>Artificial Organs</i> , 2011 , 35, 221-5	2.6	5
69	Postural activation of the human medial gastrocnemius muscle: are the muscle units spatially localised?. <i>Journal of Physiology</i> , 2011 , 589, 431-43	3.9	83
68	Insights gained into the interpretation of surface electromyograms from the gastrocnemius muscles: A simulation study. <i>Journal of Biomechanics</i> , 2011 , 44, 1096-103	2.9	64
67	Solving EMG-force relationship using Particle Swarm Optimization. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2011 , 2011, 3861-4	0.9	10
66	Advances in surface EMG: recent progress in clinical research applications. <i>Critical Reviews in Biomedical Engineering</i> , 2010 , 38, 347-79	1.1	71
65	Advances in surface EMG: recent progress in detection and processing techniques. <i>Critical Reviews in Biomedical Engineering</i> , 2010 , 38, 305-45	1.1	106

(2006-2010)

63	Decoding the neural drive to muscles from the surface electromyogram. <i>Clinical Neurophysiology</i> , 2010 , 121, 1616-23	4.3	216
62	Repeatability of innervation zone identification in the external anal sphincter muscle. <i>Neurourology and Urodynamics</i> , 2010 , 29, 449-57	2.3	18
61	Automatic segmentation of surface EMG images: Improving the estimation of neuromuscular activity. <i>Journal of Biomechanics</i> , 2010 , 43, 2149-58	2.9	71
60	Analysis of intramuscular electromyogram signals. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2009 , 367, 357-68	3	71
59	Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. <i>Clinical Biomechanics</i> , 2009 , 24, 122-34	2.2	229
58	A bi-dimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue. <i>Journal of Electromyography and Kinesiology</i> , 2009 , 19, 851-63	2.5	60
57	Automatic localisation of innervation zones: a simulation study of the external anal sphincter. Journal of Electromyography and Kinesiology, 2009 , 19, e413-21	2.5	20
56	Estimating motor unit discharge patterns from high-density surface electromyogram. <i>Clinical Neurophysiology</i> , 2009 , 120, 551-62	4.3	171
55	Compression of multidimensional biomedical signals with spatial and temporal codebook-excited linear prediction. <i>IEEE Transactions on Biomedical Engineering</i> , 2009 , 56, 2604-10	5	11
54	Adjustments differ among low-threshold motor units during intermittent, isometric contractions. <i>Journal of Neurophysiology</i> , 2009 , 101, 350-9	3.2	51
53	Detection of individual motor units of the puborectalis muscle by non-invasive EMG electrode arrays. <i>Journal of Electromyography and Kinesiology</i> , 2008 , 18, 382-9	2.5	11
52	Effect of electrode array position and subcutaneous tissue thickness on conduction velocity estimation in upper trapezius muscle. <i>Journal of Electromyography and Kinesiology</i> , 2008 , 18, 628-36	2.5	17
51	Analysis of motor units with high-density surface electromyography. <i>Journal of Electromyography and Kinesiology</i> , 2008 , 18, 879-90	2.5	191
50	Assessment of force and fatigue in isometric contractions of the upper trapezius muscle by surface EMG signal and perceived exertion scale. <i>Gait and Posture</i> , 2008 , 28, 179-86	2.6	101
49	Separation of propagating and non propagating components in surface EMG. <i>Biomedical Signal Processing and Control</i> , 2008 , 3, 126-137	4.9	8
48	Reliability of a novel neurostimulation method to study involuntary muscle phenomena. <i>Muscle and Nerve</i> , 2008 , 37, 90-100	3.4	26
47	Motor units in cranial and caudal regions of the upper trapezius muscle have different discharge rates during brief static contractions. <i>Acta Physiologica</i> , 2008 , 192, 453	5.6	
46	Influence of motor unit properties on the size of the simulated evoked surface EMG potential. Experimental Brain Research, 2006 , 169, 37-49	2.3	66

45	Basic Physiology and Biophysics of EMG Signal Generation 2005 , 1-25	22
44	Decomposition of Intramuscular EMG Signals 2005 , 47-80	2
43	Needle and Wire Detection Techniques 2005 , 27-46	9
42	Biophysics of the Generation of EMG Signals 2005 , 81-105	16
41	Detection and Conditioning of the Surface EMG Signal 2005 , 107-131	17
40	Single-Channel Techniques for Information Extraction from the Surface EMG Signal 2005, 133-168	5
39	Multi-Channel Techniques for Information Extraction from the Surface EMG 2005 , 169-203	1
38	EMG Modeling and Simulation 2005 , 205-231	5
37	Myoelectric Manifestations of Muscle Fatigue 2005 , 233-258	12
36	Advanced Signal Processing Techniques 2005 , 259-304	4
35	Surface Mechanomyogram 2005 , 305-322	2
34	Surface EMG Applications in Neurology 2005 , 323-342	1
33	Applications in Exercise Physiology 2005 , 365-379	
32	Applications in Movement and Gait Analysis 2005 , 381-401	1
31	Applications in Rehabilitation Medicine and Related Fields 2005 , 403-433	
30	Biofeedback Applications 2005 , 435-451	2
29	Control of Powered Upper Limb Prostheses 2005 , 453-475	11
28	Applications in Ergonomics 2005 , 343-363	12

(2002-2005)

27	Time-frequency analysis and estimation of muscle fiber conduction velocity from surface EMG signals during explosive dynamic contractions. <i>Journal of Neuroscience Methods</i> , 2005 , 142, 267-74	3	31
26	Influence of amplitude cancellation on the simulated surface electromyogram. <i>Journal of Applied Physiology</i> , 2005 , 98, 120-31	3.7	287
25	Multichannel surface EMG for the non-invasive assessment of the anal sphincter muscle. <i>Digestion</i> , 2004 , 69, 112-22	3.6	63
24	A surface EMG generation model with multilayer cylindrical description of the volume conductor. <i>IEEE Transactions on Biomedical Engineering</i> , 2004 , 51, 415-26	5	154
23	Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions. <i>IEEE Transactions on Biomedical Engineering</i> , 2004 , 51, 1383-93	5	100
22	Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals. <i>IEEE Transactions on Biomedical Engineering</i> , 2004 , 51, 1555-67	5	62
21	Reproducibility of muscle-fiber conduction velocity estimates using multichannel surface EMG techniques. <i>Muscle and Nerve</i> , 2004 , 29, 282-91	3.4	35
20	Myoelectric manifestations of fatigue during exposure to hypobaric hypoxia for 12 days. <i>Muscle and Nerve</i> , 2004 , 30, 618-25	3.4	16
19	Estimation of average muscle fiber conduction velocity from two-dimensional surface EMG recordings. <i>Journal of Neuroscience Methods</i> , 2004 , 134, 199-208	3	47
18	A new method for the extraction and classification of single motor unit action potentials from surface EMG signals. <i>Journal of Neuroscience Methods</i> , 2004 , 136, 165-77	3	125
17	The extraction of neural strategies from the surface EMG. Journal of Applied Physiology, 2004, 96, 1486	-9357	988
16	M-wave properties during progressive motor unit activation by transcutaneous stimulation. <i>Journal of Applied Physiology</i> , 2004 , 97, 545-55	3.7	44
15	Effect of side dominance on myoelectric manifestations of muscle fatigue in the human upper trapezius muscle. <i>European Journal of Applied Physiology</i> , 2003 , 90, 480-8	3.4	37
14	Selectivity of spatial filters for surface EMG detection from the tibialis anterior muscle. <i>IEEE Transactions on Biomedical Engineering</i> , 2003 , 50, 354-64	5	49
13	A novel approach for estimating muscle fiber conduction velocity by spatial and temporal filtering of surface EMG signals. <i>IEEE Transactions on Biomedical Engineering</i> , 2003 , 50, 1340-51	5	50
12	The linear electrode array: a useful tool with many applications. <i>Journal of Electromyography and Kinesiology</i> , 2003 , 13, 37-47	2.5	204
11	Effect of age on muscle functions investigated with surface electromyography. <i>Muscle and Nerve</i> , 2002 , 25, 65-76	3.4	128
10	Surface EMG crosstalk between knee extensor muscles: experimental and model results. <i>Muscle and Nerve</i> , 2002 , 26, 681-95	3.4	141

9	Standardising surface electromyogram recordings for assessment of activity and fatigue in the human upper trapezius muscle. <i>European Journal of Applied Physiology</i> , 2002 , 86, 469-78	3.4	118	
8	Upper trapezius muscle mechanomyographic and electromyographic activity in humans during low force fatiguing and non-fatiguing contractions. <i>European Journal of Applied Physiology</i> , 2002 , 87, 327-36	53.4	71	
7	Influence of anatomical, physical, and detection-system parameters on surface EMG. <i>Biological Cybernetics</i> , 2002 , 86, 445-56	2.8	246	
6	Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging. <i>Journal of Neuroscience Methods</i> , 2002 , 115, 1-12	3	113	
5	Evaluation of intra-muscular EMG signal decomposition algorithms. <i>Journal of Electromyography and Kinesiology</i> , 2001 , 11, 175-87	2.5	51	
4	Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions. <i>Journal of Orthopaedic and Sports Physical Therapy</i> , 1996 , 24, 342-53	4.2	117	
3	Surface myoelectric signal cross-talk among muscles of the leg. <i>Electroencephalography and Clinical Neurophysiology</i> , 1988 , 69, 568-75		244	
2	Size and X-ray density of normal and denervated muscles of the human leg and forearm. <i>International Rehabilitation Medicine</i> , 1986 , 8, 82-9		2	
1	Median frequency of the myoelectric signal. Effects of muscle ischemia and cooling. European Journal of Applied Physiology and Occupational Physiology 1984, 52, 258-65		116	