Andreas P Gondikas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/872984/publications.pdf Version: 2024-02-01

		394421	552781
27	2,454	19	26
papers	citations	h-index	g-index
31	31	31	3516
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Hydrothermal Vent Field at the Eastern Edge of the Hellenic Volcanic Arc: The Avyssos Caldera (Nisyros). Geosciences (Switzerland), 2021, 11, 290.	2.2	2
2	Monitoring anthropogenic particles in the environment: Recent developments and remaining challenges at the forefront of analytical methods. Current Opinion in Colloid and Interface Science, 2021, 56, 101513.	7.4	18
3	Challenges and current approaches toward environmental monitoring of nanomaterials. , 2021, , 73-108.		2
4	Nanomaterial Fate in Seawater: A Rapid Sink or Intermittent Stabilization?. Frontiers in Environmental Science, 2020, 8, .	3.3	22
5	Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science: Nano, 2020, 7, 351-367.	4.3	59
6	CTD data profiling to assess the natural hazard of active submarine vent fields: the case of Santorini Island. Bulletin of the Geological Society of Greece, 2020, 56, 70.	0.5	0
7	Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. Environmental Science & Technology, 2018, 52, 1514-1524.	10.0	36
8	Where is the nano? Analytical approaches for the detection and quantification of TiO ₂ engineered nanoparticles in surface waters. Environmental Science: Nano, 2018, 5, 313-326.	4.3	101
9	Manganese Inhibits Viability of Prostate Cancer Cells. Anticancer Research, 2018, 38, 137-145.	1.1	13
10	Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano, 2017, 4, 307-314.	4.3	128
11	TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment. Journal of Analytical Atomic Spectrometry, 2017, 32, 1400-1411.	3.0	39
12	Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching. Environmental Science & Technology, 2017, 51, 11669-11680.	10.0	35
13	Release of TiO 2 – (Nano) particles from construction and demolition landfills. NanoImpact, 2017, 8, 73-79.	4.5	39
14	Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles. Environmental Science & Technology, 2017, 51, 9202-9209.	10.0	14
15	Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles. International Journal of Pharmaceutics, 2016, 513, 309-318.	5.2	19
16	Nano electrospray gas-phase electrophoretic mobility molecular analysis (nES CEMMA) of liposomes: applicability of the technique for nano vesicle batch control. Analyst, The, 2016, 141, 6042-6050.	3.5	15
17	Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. International Journal of Environmental Research and Public Health, 2015, 12, 15756-15768.	2.6	100
18	Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. Environmental Science: Nano, 2015, 2, 421-428	4.3	110

#	Article	IF	CITATIONS
19	Spot the Difference: Engineered and Natural Nanoparticles in the Environment—Release, Behavior, and Fate. Angewandte Chemie - International Edition, 2014, 53, 12398-12419.	13.8	210
20	Release of TiO ₂ Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environmental Science & Technology, 2014, 48, 5415-5422.	10.0	344
21	Early-stage precipitation kinetics of zinc sulfide nanoclusters forming in the presence of cysteine. Chemical Geology, 2012, 329, 10-17.	3.3	20
22	Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in <i>Caenorhabditis elegans</i> . Environmental Science & Technology, 2012, 46, 1119-1127.	10.0	535
23	Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles: Part 2–Toxicity and Ag Speciation. Environmental Science & Technology, 2012, 46, 6925-6933.	10.0	128
24	Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles. Part 1. Aggregation and Dissolution. Environmental Science & Technology, 2012, 46, 6915-6924.	10.0	173
25	Cysteine-Induced Modifications of Zero-valent Silver Nanomaterials: Implications for Particle Surface Chemistry, Aggregation, Dissolution, and Silver Speciation. Environmental Science & Samp; Technology, 2012, 46, 7037-7045.	10.0	208
26	Influence of amino acids cysteine and serine on aggregation kinetics of zinc and mercury sulfide colloids. Journal of Colloid and Interface Science, 2010, 347, 167-171.	9.4	45
27	Analysis of size characterized manganese species from liver extracts using capillary zone electrophoresis coupled to inductively coupled plasma mass spectrometry (CZE-ICP-MS). Analytica Chimica Acta, 2006, 573-574, 172-180.	5.4	26