Teresa Moreno

List of Publications by Citations

Source: https://exaly.com/author-pdf/8729401/teresa-moreno-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

171 10,388 54 97 g-index

181 11,801 7 s.84 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
171	A European aerosol phenomenology B: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. <i>Atmospheric Environment</i> , 2010 , 44, 1308-1320	5.3	563
170	Spatial and chemical patterns of PM10 in road dust deposited in urban environment. <i>Atmospheric Environment</i> , 2009 , 43, 1650-1659	5.3	331
169	Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. <i>Atmospheric Environment</i> , 2007 , 41, 7219-7231	5.3	330
168	African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. <i>Atmospheric Environment</i> , 2009 , 43, 4266-4277	5.3	318
167	Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. <i>Chemosphere</i> , 2006 , 65, 261-70	8.4	294
166	Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. <i>PLoS Medicine</i> , 2015 , 12, e1001792	11.6	293
165	Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. <i>Journal of Hazardous Materials</i> , 2008 , 154, 175-83	12.8	287
164	New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 6207-6227	6.8	269
163	Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999 2005. <i>Atmospheric Environment</i> , 2008 , 42, 3964-3979	5.3	258
162	Sources and variability of inhalable road dust particles in three European cities. <i>Atmospheric Environment</i> , 2011 , 45, 6777-6787	5.3	234
161	Urban air quality: the challenge of traffic non-exhaust emissions. <i>Journal of Hazardous Materials</i> , 2014 , 275, 31-6	12.8	221
160	Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. <i>International Journal of Coal Geology</i> , 2008 , 75, 93-104	5.5	212
159	Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. <i>Environment International</i> , 2014 , 69, 200-12	12.9	190
158	Source apportionment of PM(10) and PM(2.5) at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. <i>Environmental Science and Pollution Research</i> , 2011 , 18, 260-9	5.1	190
157	PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 111-128	6.8	188
156	Chemical tracers of particulate emissions from commercial shipping. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 7472-7	10.3	176
155	Health effects from Sahara dust episodes in Europe: literature review and research gaps. <i>Environment International</i> , 2012 , 47, 107-14	12.9	150

(2008-2012)

154	Variability of levels and composition of PM₁₀ and PM_{2.5} in the Barcelona metro system. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 5055-5076	6.8	138
153	Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays. <i>Atmospheric Environment</i> , 2007 , 41, 913-922	5.3	132
152	Variations in vanadium, nickel and lanthanoid element concentrations in urban air. <i>Science of the Total Environment</i> , 2010 , 408, 4569-79	10.2	127
151	Sources of indoor and outdoor PM2.5 concentrations in primary schools. <i>Science of the Total Environment</i> , 2014 , 490, 757-65	10.2	119
150	Biomass burning contributions to urban aerosols in a coastal Mediterranean city. <i>Science of the Total Environment</i> , 2012 , 427-428, 175-90	10.2	113
149	Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail. <i>Atmospheric Environment</i> , 2006 , 40, 6791-6803	5.3	109
148	Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. <i>Environmental Research</i> , 2015 , 142, 495-510	7.9	105
147	Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. <i>Atmospheric Environment</i> , 2014 , 92, 461-468	5.3	105
146	Assessment of personal exposure to particulate air pollution during commuting in European citiesrecommendations and policy implications. <i>Science of the Total Environment</i> , 2014 , 490, 785-97	10.2	104
145	Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. <i>International Journal of Coal Geology</i> , 2011 , 85, 2-22	5.5	104
144	An introductory TEM study of Fe-nanominerals within coal fly ash. <i>Science of the Total Environment</i> , 2009 , 407, 4972-4	10.2	103
143	Engineering in direct synthesis of hydrogen peroxide: targets, reactors and guidelines for operational conditions. <i>Green Chemistry</i> , 2014 , 16, 2320	10	101
142	Trace element variation in size-fractionated African desert dusts. <i>Journal of Arid Environments</i> , 2008 , 72, 1034-1045	2.5	101
141	Health impact assessment of a reduction in ambient PM(2.5) levels in Spain. <i>Environment International</i> , 2011 , 37, 342-8	12.9	100
140	Exposure to airborne particulate matter in the subway system. <i>Science of the Total Environment</i> , 2015 , 511, 711-22	10.2	99
139	Factors controlling air quality in different European subway systems. <i>Environmental Research</i> , 2016 , 146, 35-46	7.9	99
138	2001-2012 trends on air quality in Spain. Science of the Total Environment, 2014, 490, 957-69	10.2	95
137	Variations of urban aerosols in the western Mediterranean. <i>Atmospheric Environment</i> , 2008 , 42, 9052-9	0 6 23	90

136	Urban NH3 levels and sources in a Mediterranean environment. Atmospheric Environment, 2012, 57, 153	3- <u>4.6</u> 4	88
135	Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. <i>Atmospheric Environment</i> , 2013 , 68, 33-44	5.3	85
134	Size and time-resolved roadside enrichment of atmospheric particulate pollutants. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2917-2931	6.8	84
133	Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. <i>Atmospheric Environment</i> , 2015 , 106, 129-138	5.3	82
132	Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 6185-6206	6.8	80
131	Effect of pasture finishing on the meat characteristics and intramuscular fatty acid profile of steers of the Rubia Gallega breed. <i>Meat Science</i> , 2004 , 67, 515-22	6.4	80
130	A new look at inhalable metalliferous airborne particles on rail subway platforms. <i>Science of the Total Environment</i> , 2015 , 505, 367-75	10.2	77
129	Lanthanoid geochemistry of urban atmospheric particulate matter. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 6502-7	10.3	77
128	Geochemistry of regional background aerosols in the Western Mediterranean. <i>Atmospheric Research</i> , 2009 , 94, 422-435	5.4	76
127	Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain. <i>Environmental Pollution</i> , 2016 , 208, 125-136	9.3	74
126	Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 9415-9430	6.8	72
125	Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. <i>International Journal of Coal Geology</i> , 2009 , 78, 16-26	5.5	71
124	Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. <i>Atmospheric Environment</i> , 2008 , 42, 7851-7861	5.3	68
123	A multidisciplinary approach to characterise exposure risk and toxicological effects of PMI and PMI amples in urban environments. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 78, 327-35	7	66
122	Evidence of biomass burning aerosols in the Barcelona urban environment during winter time. <i>Atmospheric Environment</i> , 2013 , 72, 81-88	5.3	61
121	Particle-induced oxidative damage is ameliorated by pulmonary antioxidants. <i>Free Radical Biology and Medicine</i> , 2002 , 32, 898-905	7.8	61
120	Effect of fireworks events on urban background trace metal aerosol concentrations: is the cocktail worth the show?. <i>Journal of Hazardous Materials</i> , 2010 , 183, 945-9	12.8	60
119	Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. <i>Science of the Total Environment</i> , 2019 , 652, 434-446	10.2	55

(2019-2003)

118	The geology of ambient aerosols: characterising urban and rural/coastal silicate PM10 I .5 and PM2.5 using high-volume cascade collection and scanning electron microscopy. <i>Atmospheric Environment</i> , 2003 , 37, 4265-4276	5.3	54
117	Effect of finishing and ageing time on quality attributes of loin from the meat of Holstein-Fresian cull cows. <i>Meat Science</i> , 2009 , 83, 484-91	6.4	53
116	Characterisation of aerosol particulate matter from urban and industrial environments: examples from Cardiff and Port Talbot, South Wales, UK. <i>Science of the Total Environment</i> , 2004 , 334-335, 337-46	10.2	53
115	Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. <i>Environment International</i> , 2021 , 147, 106326	12.9	52
114	Preferential Fractionation of Trace Metals Metalloids into PM10 Resuspended from Contaminated Gold Mine Tailings at Rodalquilar, Spain. <i>Water, Air, and Soil Pollution</i> , 2007 , 179, 93-105	2.6	50
113	Air quality modeling and mortality impact of fine particles reduction policies in Spain. <i>Environmental Research</i> , 2014 , 128, 15-26	7.9	49
112	Emission factors from road dust resuspension in a Mediterranean freeway. <i>Atmospheric Environment</i> , 2012 , 61, 580-587	5.3	48
111	Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. Journal of Aerosol Science, 2015 , 90, 103-113	4.3	47
110	Evaluating urban PM10 pollution benefit induced by street cleaning activities. <i>Atmospheric Environment</i> , 2009 , 43, 4472-4480	5.3	47
109	Road dust contribution to PM levels E valuation of the effectiveness of street washing activities by means of Positive Matrix Factorization. <i>Atmospheric Environment</i> , 2011 , 45, 2193-2201	5.3	46
108	Oxidative properties of ambient PM2.5 and elemental composition: Heterogeneous associations in 19 European cities. <i>Atmospheric Environment</i> , 2009 , 43, 4595-4602	5.3	46
107	Size fractionation in mercury-bearing airborne particles (HgPM10) at Almadli, Spain: Implications for inhalation hazards around old mines. <i>Atmospheric Environment</i> , 2005 , 39, 6409-6419	5.3	46
106	Oxidative potential of subway PM2.5. Atmospheric Environment, 2017, 148, 230-238	5.3	44
105	Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. <i>International Journal of Coal Geology</i> , 2019 , 203, 52-59	5.5	42
104	Geochemistry of PM₁₀ over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6107-6129	6.8	42
103	Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncavl Valley (Chile). <i>Chemosphere</i> , 2014 , 111, 513-21	8.4	41
102	Concentrations, sources and geochemistry of airborne particulate matter at a major European airport. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 854-62		41
101	Effectiveness of commercial face masks to reduce personal PM exposure. <i>Science of the Total Environment</i> , 2019 , 650, 1582-1590	10.2	40

100	Exotic dust incursions into central Spain: Implications for legislative controls on atmospheric particulates. <i>Atmospheric Environment</i> , 2005 , 39, 6109-6120	5.3	39
99	Effects of road dust suppressants on PM levels in a Mediterranean urban area. <i>Environmental Science & Environmental &</i>	10.3	38
98	Peculiarities in atmospheric particle number and size-resolved speciation in an urban area in the western Mediterranean: Results from the DAURE campaign. <i>Atmospheric Environment</i> , 2011 , 45, 5282-5	2593	38
97	Platiniferous chromitite and the tectonic setting of ultramafic rocks in Cabo Ortegal, NW Spain. Journal of the Geological Society, 2001 , 158, 601-614	2.7	37
96	Variations in the source, metal content and bioreactivity of technogenic aerosols: a case study from Port Talbot, Wales, UK. <i>Science of the Total Environment</i> , 2004 , 333, 59-73	10.2	36
95	Size distribution and chemical composition of metalliferous stack emissions in the San Roque petroleum refinery complex, southern Spain. <i>Journal of Hazardous Materials</i> , 2011 , 190, 713-22	12.8	35
94	African dust and air quality over Spain: Is it only dust that matters?. <i>Science of the Total Environment</i> , 2019 , 686, 737-752	10.2	34
93	Manganese in the urban atmosphere: identifying anomalous concentrations and sources. <i>Environmental Science and Pollution Research</i> , 2011 , 18, 173-83	5.1	34
92	Nutritional characteristics of veal from weaned and unweaned calves: Discriminatory ability of the fat profile. <i>Meat Science</i> , 2006 , 73, 209-17	6.4	34
91	Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. <i>Science of the Total Environment</i> , 2017 , 584-585, 849-855	10.2	33
90	The effect of ventilation protocols on airborne particulate matter in subway systems. <i>Science of the Total Environment</i> , 2017 , 584-585, 1317-1323	10.2	33
89	Phenomenology of high-ozone episodes in NE Spain. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2817	-26838	33
88	Bioaerosols in the Barcelona subway system. <i>Indoor Air</i> , 2017 , 27, 564-575	5.4	32
87	Physicochemical variations in atmospheric aerosols recorded at sea onboard the AtlanticMediterranean 2008 Scholar Ship cruise (Part II): Natural versus anthropogenic influences revealed by PM10 trace element geochemistry. <i>Atmospheric Environment</i> , 2010 , 44, 2563-2576	5.3	32
86	The identification of metallic elements in airborne particulate matter derived from fossil fuels at Puertollano, Spain. <i>International Journal of Coal Geology</i> , 2007 , 71, 122-128	5.5	32
85	Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide. <i>Chemical Engineering Journal</i> , 2011 , 166, 1061-1065	14.7	31
84	Assessing the performance of methods to detect and quantify African dust in airborne particulates. <i>Environmental Science & Environmental Science & En</i>	10.3	31
83	The physicochemical characterisation of microscopic airborne particles in south Wales: a review of the locations and methodologies. <i>Science of the Total Environment</i> , 2006 , 360, 43-59	10.2	31

(2012-2004)

Indicators of physiological and immunological status of Litopenaeus setiferus wild populations (Crustacea, Penaeidae). <i>Marine Biology</i> , 2004 , 145, 401	2.5	31
Modelling Saharan dust transport into the Mediterranean basin with CMAQ. <i>Atmospheric Environment</i> , 2013 , 70, 337-350	5.3	30
Effect of ventilation strategies and air purifiers on the children® exposure to airborne particles and gaseous pollutants in school gyms. <i>Science of the Total Environment</i> , 2020 , 712, 135673	10.2	30
Vehicle interior air quality conditions when travelling by taxi. <i>Environmental Research</i> , 2019 , 172, 529-54	17 .9	29
Direct synthesis of hydrogen peroxide in methanol and water using scCO2 and N2 as diluents. <i>Green Chemistry</i> , 2010 , 12, 282-289	10	29
The spatial and temporal variations in PM10 mass from six UK homes. <i>Science of the Total Environment</i> , 2004 , 324, 41-53	10.2	29
Airborne particles produced during enamel cleanup after removal of orthodontic appliances. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 2003 , 124, 683-6	2.1	29
Lessons from the COVID-19 air pollution decrease in Spain: Now what?. <i>Science of the Total Environment</i> , 2021 , 779, 146380	10.2	29
Aerosol sources in subway environments. Environmental Research, 2018, 167, 314-328	7.9	28
Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. <i>Atmospheric Environment</i> , 2014 , 98, 271-282	5.3	26
Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 1411-1424	6.8	26
STUDY OF HYDROLYZED PROTEIN COMPOSITION, FREE AMINO ACID, AND TAURINE CONTENT IN DIFFERENT MUSCLES OF GALICIAN BLONDE BEEF. <i>Journal of Muscle Foods</i> , 2010 , 21, 769-784		26
Road Dust Emission Sources and Assessment of Street Washing Effect. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 734-743	4.6	26
Variations in school playground and classroom atmospheric particulate chemistry. <i>Atmospheric Environment</i> , 2014 , 91, 162-171	5.3	25
Effect of supplementing different oils: linseed, sunflower and soybean, on animal performance, carcass characteristics, meat quality and fatty acid profile of veal from "Rubia Gallega" calves. <i>Meat Science</i> , 2014 , 96, 829-36	6.4	24
Monitoring of heavy metal concentrations in home outdoor air using moss bags. <i>Environmental Pollution</i> , 2011 , 159, 954-62	9.3	24
Effect of weaning status and storage time under vacuum upon physical characteristics of meat of the Rubia Gallega breed. <i>Meat Science</i> , 2006 , 73, 102-8	6.4	24
Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan. <i>Science of the Total Environment</i> , 2012 , 424, 182-92	10.2	23
	(Crustacea, Penaeidae). Marine Biology, 2004, 145, 401 Modelling Saharan dust transport into the Mediterranean basin with CMAQ. Atmospheric Environment, 2013, 70, 337-350 Effect of ventilation strategies and air purifiers on the childrenB exposure to airborne particles and gaseous pollutants in school gyms. Science of the Total Environment, 2020, 712, 135673 Vehicle interior air quality conditions when travelling by taxi. Environmental Research, 2019, 172, 529-52 Direct synthesis of hydrogen peroxide in methanol and water using scCO2 and N2 as diluents. Green Chemistry, 2010, 12, 282-289 The spatial and temporal variations in PM10 mass from six UK homes. Science of the Total Environment, 2004, 324, 41-53 Airborne particles produced during enamel cleanup after removal of orthodontic appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 2003, 124, 683-6 Lessons from the COVID-19 air pollution decrease in Spain: Now what?. Science of the Total Environment, 2021, 779, 146380 Aerosol sources in subway environments. Environmental Research, 2018, 167, 314-328 Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. Atmospheric Environment, 2014, 98, 271-282 Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality. Atmospheric Chemistry and Physics, 2013, 13, 1411-1424 STUDY OF HYDROLYZED PROTEIN COMPOSITION, FREE AMINO ACID, AND TAURINE CONTENT IN DIFFERENT MUSCLES OF GALICIAN BLONDE BEEF. Journal of Muscle Foods, 2010, 21, 769-784 Road Dust Emission Sources and Assessment of Street Washing Effect. Aerosol and Air Quality Research, 2014, 14, 734-743 Variations in school playground and classroom atmospheric particulate chemistry. Atmospheric Environment, 2014, 91, 162-171 Effect of supplementing different oils: linseed, sunflower and soybean, on animal performance, carcas characteristics, meat quality and fatty acid profile of veal from "Rubia Gallega" calves. Meat Science, 2014, 96, 829-36 Mo	Modelling Saharan dust transport into the Mediterranean basin with CMAQ. Atmospheric Environment, 2013, 70, 337-350 Effect of ventilation strategies and air purifiers on the childrenß exposure to airborne particles and gaseous pollutants in school gyms. Science of the Total Environment, 2020, 712, 135673 10.2 Vehicle interior air quality conditions when travelling by taxi. Environmental Research, 2019, 172, 529-542, 9 Direct synthesis of hydrogen peroxide in methanol and water using scCO2 and N2 as diluents. Green Chemistry, 2010, 12, 282-289 The spatial and temporal variations in PM10 mass from six UK homes. Science of the Total Environment, 2004, 324, 41-53 Airborne particles produced during enamel cleanup after removal of orthodontic appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 2003, 124, 683-6 Lessons from the COVID-19 air pollution decrease in Spain: Now what?. Science of the Total Environment, 2021, 779, 146380 Aerosol sources in subway environments. Environmental Research, 2018, 167, 314-328 7.9 Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. Atmospheric Environment, 2014, 98, 271-282 Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality. Atmospheric Chemistry and Physics, 2013, 13, 1411-1424 STUDY OF HYDROLYZED PROTEIN COMPOSITION, FREE AMINO ACID, AND TAURINE CONTENT IN DIFFERENT MUSCLES OF GALICIAN BLONDE BEEF. Journal of Muscle Foods, 2010, 21, 769-784 Road Dust Emission Sources and Assessment of Street Washing Effect. Aerosol and Air Quality Research, 2014, 14, 734-743 Variations in school playground and classroom atmospheric particulate chemistry. Atmospheric Environment, 2104, 91, 162-171 Fifect of supplementing different oils: linseed, sunflower and soybean, on animal performance, carcass characteristics, meat quality and fatty acid profile of veal from "Rubia Gallega" calves. Meat Science, 2014, 96, 829-36 Monitoring of heavy metal concentration

64	Controls on hourly variations in urban background air pollutant concentrations. <i>Atmospheric Environment</i> , 2009 , 43, 4178-4186	5.3	23
63	Direct synthesis of H2O2 in methanol at low pressures over Pd/C catalyst: Semi-continuous process. <i>Applied Catalysis A: General</i> , 2010 , 386, 28-33	5.1	23
62	PM source apportionment and trace metallic aerosol affinities during atmospheric pollution episodes: a case study from Puertollano, Spain. <i>Journal of Environmental Monitoring</i> , 2006 , 8, 1060-8		23
61	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8991-9019	6.8	22
60	Airborne particulate matter and premature deaths in urban Europe: the new WHO guidelines and the challenge ahead as illustrated by Spain. <i>European Journal of Epidemiology</i> , 2007 , 22, 1-5	12.1	22
59	Factors controlling particle number concentration and size at metro stations. <i>Atmospheric Environment</i> , 2017 , 156, 169-181	5.3	21
58	Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. <i>Journal of Hazardous Materials</i> , 2020 , 399, 122935	12.8	21
57	Profiling transient daytime peaks in urban air pollutants: city centre traffic hotspot versus urban background concentrations. <i>Journal of Environmental Monitoring</i> , 2009 , 11, 1535-42		21
56	Formation of a secondary platinum-group mineral assemblage in chromitites from the Herbeira ultramafic massif in Cabo Ortegal, NW Spain. <i>European Journal of Mineralogy</i> , 1999 , 11, 363-378	2.2	21
55	Identification of chemical tracers in the characterisation and source apportionment of inhalable inorganic airborne particles: an overview. <i>Biomarkers</i> , 2009 , 14 Suppl 1, 17-22	2.6	20
54	Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 370-8		20
53	Improving air quality in subway systems: An overview. <i>Environmental Pollution</i> , 2018 , 239, 829-831	9.3	19
52	Physico-chemical characterization of playground sand dust, inhalable and bioaccessible fractions. <i>Chemosphere</i> , 2018 , 190, 454-462	8.4	19
51	The influence of lifestyle on airborne particle surface area doses received by different Western populations. <i>Environmental Pollution</i> , 2018 , 232, 113-122	9.3	19
50	Decomposition reaction of H2O2 over Pd/C catalyst in an aqueous medium at high pressure: Detailed kinetic study and modelling. <i>Journal of Supercritical Fluids</i> , 2011 , 57, 227-235	4.2	19
49	Controlling influences on daily fluctuations of inhalable particles and gas concentrations: Local versus regional and exotic atmospheric pollutants at Puertollano, Spain. <i>Atmospheric Environment</i> , 2006 , 40, 3207-3218	5.3	19
48	Pulmonary antioxidants exert differential protective effects against urban and industrial particulate matter. <i>Journal of Biosciences</i> , 2003 , 28, 101-7	2.3	19
47	Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. <i>International Journal of Coal Geology</i> , 2021 , 235, 103677	5.5	17

46	Within-city contrasts in PM composition and sources and their relationship with nitrogen oxides. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 2718-28		15	
45	Anthropogenic versus mineral aerosols in the stimulation of microbial planktonic communities in coastal waters of the northwestern Mediterranean Sea. <i>Science of the Total Environment</i> , 2017 , 574, 5	53-56 8	14	
44	Implementation of road dust resuspension in air quality simulations of particulate matter in Madrid (Spain). <i>Frontiers in Environmental Science</i> , 2015 , 3,	4.8	14	
43	COVID-19 face masks: A new source of human and environmental exposure to organophosphate esters. <i>Environment International</i> , 2021 , 154, 106654	12.9	14	
42	Effect of weaning status on animal performance and meat quality of Rubia Gallega calves. <i>Meat Science</i> , 2010 , 86, 832-8	6.4	13	
41	Bedrock controls on the mineralogy and chemistry of PM10 extracted from Australian desert sediments. <i>Environmental Geology</i> , 2009 , 57, 411-420		12	
40	Physiological and immunological conditions of wild populations of Farfantepenaeus duorarum from the campeche sound (Crustacea, Penaeidae). <i>Marine Biology</i> , 2007 , 152, 929-938	2.5	12	
39	Spatio-temporal patterns of high summer ozone events in the Madrid Basin, Central Spain. <i>Atmospheric Environment</i> , 2018 , 185, 207-220	5.3	12	
38	Formation and alteration of airborne particles in the subway environment. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 59-64	4.3	11	
37	Origin and speciation of major and trace PM elements in the Barcelona subway system. <i>Transportation Research, Part D: Transport and Environment</i> , 2019 , 72, 17-35	6.4	11	
36	Assessment of the variability of atmospheric pollution in National Parks of mainland Spain. <i>Atmospheric Environment</i> , 2016 , 132, 332-344	5.3	11	
35	Tectonomagmatism in continental arcs: evidence from the Sark arc complex. <i>Tectonophysics</i> , 2002 , 352, 185-201	3.1	11	
34	Vertical and horizontal fall-off of black carbon and NO within urban blocks. <i>Science of the Total Environment</i> , 2019 , 686, 236-245	10.2	10	
33	Variation of PM2.5 concentrations in relation to street washing activities. <i>Atmospheric Environment</i> , 2012 , 54, 465-469	5.3	10	
32	The effect of grazing on the fatty acid profile of longissimus thoracis muscle in Galician Blond calves. <i>Animal</i> , 2007 , 1, 1227-35	3.1	10	
31	Trace element fractionation processes in resuspended mineral aerosols extracted from Australian continental surface materials. <i>Soil Research</i> , 2008 , 46, 128	1.8	10	
30	Evaluation of the Semi-Continuous OCEC analyzer performance with the EUSAAR2 protocol. <i>Science of the Total Environment</i> , 2020 , 747, 141266	10.2	10	
29	Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona. <i>Science of the Total Environment</i> , 2018 , 642, 148-154	10.2	9	

28	An evaluation of mass, number concentration, chemical composition and types of particles in a cafeteria before and after the passage of an antismoking law. <i>Particuology</i> , 2013 , 11, 527-532	2.8	8
27	Effect of weaning status on lipids of Galician Blond veal: total fatty acids and 18:1 cis and trans isomers. <i>Meat Science</i> , 2010 , 86, 357-63	6.4	8
26	Physicochemical variations in atmospheric aerosols recorded at sea onboard the AtlanticMediterranean 2008 Scholar Ship cruise (Part I): Particle mass concentrations, size ratios, and main chemical components. <i>Atmospheric Environment</i> , 2010 , 44, 2552-2562	5.3	8
25	Presenting SAPUSS: solving aerosol problem by using synergistic strategies at Barcelona, Spain		7
24	Effects of weaning and finishing feeding treatment on fatty acids, especially cis and trans C18:1 isomers, in the Longissimus thoracis muscle of Galician Blond calves. <i>Animal</i> , 2011 , 5, 802-12	3.1	6
23	Effects on quality attributes of commercial veal pieces under different ageing treatments. <i>International Journal of Food Science and Technology</i> , 2007 , 42, 373-379	3.8	6
22	Road traffic and sandy playground influence on ambient pollutants in schools. <i>Atmospheric Environment</i> , 2015 , 111, 94-102	5.3	5
21	New Directions: Legislative considerations for controlling exposure to atmospheric aerosols in rural areas. <i>Atmospheric Environment</i> , 2008 , 42, 8979-8984	5.3	5
20	How can ventilation be improved on public transportation buses? Insights from CO measurements. <i>Environmental Research</i> , 2021 , 112451	7.9	5
19	Chemistry and sources of PM2.5 and volatile organic compounds breathed inside urban commuting and tourist buses. <i>Atmospheric Environment</i> , 2020 , 223, 117234	5.3	5
18	Organophosphate esters in airborne particles from subway stations. <i>Science of the Total Environment</i> , 2021 , 769, 145105	10.2	5
17	Using miniaturised scanning mobility particle sizers to observe size distribution patterns of quasi-ultrafine aerosols inhaled during city commuting. <i>Environmental Research</i> , 2020 , 191, 109978	7.9	4
16	Air Quality in Subway Systems 2018 , 289-321		3
15	PM speciation and sources in Mexico during the MILAGRO-2006 Campaign 2007 ,		3
14	CHARACTERISATION OF AIRBORNE PARTICULATE MATTER AND RELATED MECHANISMS OF TOXICITY: AN EXPERIMENTAL APPROACH. <i>Air Pollution Reviews</i> , 2006 , 69-110		3
13	Aerosol transmission of human pathogens: From miasmata to modern viral pandemics and their preservation potential in the Anthropocene record. <i>Geoscience Frontiers</i> , 2021 , 101282	6	3
12	Geochemistry and oxidative potential of the respirable fraction of powdered mined Chinese coals. <i>Science of the Total Environment</i> , 2021 , 800, 149486	10.2	3
11	Open air mineral treatment operations and ambient air quality: assessment and source apportionment. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 2939-51		2

LIST OF PUBLICATIONS

10	High-energy forage feeding diets and body condition on the finishing of cull dairy cows. <i>Animal</i> , 2012 , 6, 1634-41	3.1	2	
9	Geochemical and size variations in inhalable UK airborne particles: the limitations of mass measurements. <i>Journal of the Geological Society</i> , 2004 , 161, 899-902	2.7	2	
8	Variability of levels of PM, black carbon and particle number concentration in selected European cities		2	
7	Chemistry and particle size distribution of respirable coal dust in underground mines in Central Eastern Europe. <i>International Journal of Coal Science and Technology</i> , 2022 , 9, 1	4.5	2	
6	Characterisation of Airborne Particulate Matter in Different European Subway Systems 2017,		1	
5	A comment on Sillanplet al. (2003) Field and laboratory tests of a high volume cascade impactor. Journal of Aerosol Science, 34, 485800 <i>Journal of Aerosol Science</i> , 2007, 38, 136-138	4.3	1	
4	Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality		1	
3	Bioaerosols in public and tourist buses. <i>Aerobiologia</i> , 2021 , 37, 525-541	2.4	O	
2	PARTICLE-INDUCED OXIDATIVE STRESS AND CYTOKINE RELEASE IS ATTENUATED BY LUNG ANTIOXIDANTS IN HUMAN ALVEOLAR MACROPHAGES AND TYPE 2 EPITHELIAL CELLS. <i>Experimental Lung Research</i> , 2003 , 29, 421-444	2.3		
1	Chapter 10 New Considerations for PM, Black Carbon, and Particle Number Concentration for Air Quality Monitoring Across Different European Cities 2016 , 177-218			