Neil A Hanley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8729053/publications.pdf

Version: 2024-02-01

57758 60623 7,097 94 44 81 citations h-index g-index papers 105 105 105 11211 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Health Technology Adoption in Liver Disease: Innovative Use of Data Science Solutions for Early Disease Detection. Frontiers in Digital Health, 2022, 4, 737729.	2.8	3
2	Donor insulin therapy in intensive care predicts early outcomes after pancreas transplantation. Diabetologia, 2021, 64, 1375-1384.	6.3	7
3	SOX9 is required for kidney fibrosis and activates NAV3 to drive renal myofibroblast function. Science Signaling, 2021, 14, .	3.6	22
4	CDH12 as a Candidate Gene for Kidney Injury in Posterior Urethral Valve Cases: A Genome-wide Association Study Among Patients with Obstructive Uropathies. European Urology Open Science, 2021, 28, 26-35.	0.4	7
5	Donor insulin use during stay in the intensive care unit should not preclude pancreas transplantation. Reply to Ventura-Aguiar P, Montagud-Marrahi E, Amor AJ et al [letter]. Diabetologia, 2021, 64, 2124-2125.	6.3	1
6	Hospital length of stay for COVID-19 patients: Data-driven methods for forward planning. BMC Infectious Diseases, 2021, 21, 700.	2.9	99
7	Understanding the burden of interstitial lung disease post-COVID-19: the UK Interstitial Lung Disease-Long COVID Study (UKILD-Long COVID). BMJ Open Respiratory Research, 2021, 8, e001049.	3.0	28
8	Reply to Flýck et al.: Alternative androgen pathway biosynthesis drives fetal female virilization in P450 oxidoreductase deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14634-14635.	7.1	4
9	Mitchell-Riley syndrome iPSC exhibit reduced pancreatic endoderm differentiation due to an <i>RFX6</i> mutation. Development (Cambridge), 2020, 147, .	2.5	10
10	Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders. Nature Communications, 2020, 11, 3920.	12.8	17
11	Donor insulin use predicts betaâ€eell function after islet transplantation. Diabetes, Obesity and Metabolism, 2020, 22, 1874-1879.	4.4	6
12	A Human Stem Cell Model of Fabry Disease Implicates LIMP-2 Accumulation in Cardiomyocyte Pathology. Stem Cell Reports, 2019, 13, 380-393.	4.8	48
13	Alternative pathway androgen biosynthesis and human fetal female virilization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22294-22299.	7.1	50
14	Identification of a primitive intestinal transcription factor network shared between esophageal adenocarcinoma and its precancerous precursor state. Genome Research, 2019, 29, 723-736.	5.5	50
15	SOX9 regulated matrix proteins are increased in patients serum and correlate with severity of liver fibrosis. Scientific Reports, 2018, 8, 17905.	3.3	30
16	Human notochordal cell transcriptome unveils potential regulators of cell function in the developing intervertebral disc. Scientific Reports, 2018, 8, 12866.	3.3	44
17	Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos. Stem Cell Reports, 2017, 9, 1387-1394.	4.8	37
18	<scp>SOX</scp> 9 predicts progression toward cirrhosis in patients while its loss protects against liver fibrosis. EMBO Molecular Medicine, 2017, 9, 1696-1710.	6.9	38

#	Article	IF	CITATIONS
19	Stem cell–derived models to improve mechanistic understanding and prediction of human drugâ€induced liver injury. Hepatology, 2017, 65, 710-721.	7.3	54
20	EINCR1 is an EGF inducible lincRNA overexpressed in lung adenocarcinomas. PLoS ONE, 2017, 12, e0181902.	2.5	5
21	A tissue-specific, Gata6-driven transcriptional program instructs remodeling of the mature arterial tree. ELife, 2017, 6, .	6.0	13
22	Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochordâ€specific markers during early human intervertebral disc development. Journal of Orthopaedic Research, 2016, 34, 1327-1340.	2.3	46
23	PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nature Communications, 2016, 7, 12502.	12.8	162
24	Common Polymorphisms at the <i>CYP17A1</i> Locus Associate With Steroid Phenotype. Hypertension, 2016, 67, 724-732.	2.7	14
25	An integrative transcriptomic atlas of organogenesis in human embryos. ELife, 2016, 5, .	6.0	61
26	TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors. Nature Cell Biology, 2015, 17, 615-626.	10.3	188
27	MicroRNA-122: A Novel Hepatocyte-Enriched in vitro Marker of Drug-Induced Cellular Toxicity. Toxicological Sciences, 2015, 144, 173-185.	3.1	33
28	Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells. Stem Cells and Development, 2015, 24, 1680-1690.	2.1	31
29	Altered Phenotype of \hat{l}^2 -Cells and Other Pancreatic Cell Lineages in Patients With Diffuse Congenital Hyperinsulinism in Infancy Caused by Mutations in the ATP-Sensitive K-Channel. Diabetes, 2015, 64, 3182-3188.	0.6	20
30	Human pancreas development. Development (Cambridge), 2015, 142, 3126-3137.	2.5	236
31	Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. Journal of Hepatology, 2015, 62, 581-589.	3.7	271
32	Periderm prevents pathological epithelial adhesions during embryogenesis. Journal of Clinical Investigation, 2014, 124, 3891-3900.	8.2	105
33	Maturation of Induced Pluripotent Stem Cell Derived Hepatocytes by 3D-Culture. PLoS ONE, 2014, 9, e86372.	2.5	156
34	Epimorphin Alters the Inhibitory Effects of SOX9 on Mmp13 in Activated Hepatic Stellate Cells. PLoS ONE, 2014, 9, e100091.	2.5	19
35	The window period of NEUROGENIN3 during human gestation. Islets, 2014, 6, e954436.	1.8	47
36	Closing in on pancreatic beta cells. Nature Biotechnology, 2014, 32, 1100-1102.	17.5	6

#	Article	IF	CITATIONS
37	The Methyltransferase WBSCR22/Merm1 Enhances Glucocorticoid Receptor Function and Is Regulated in Lung Inflammation and Cancer. Journal of Biological Chemistry, 2014, 289, 8931-8946.	3.4	32
38	Development of the Human Pancreas From Foregut to Endocrine Commitment. Diabetes, 2013, 62, 3514-3522.	0.6	247
39	Generation of Multipotent Foregut Stem Cells from Human Pluripotent Stem Cells. Stem Cell Reports, 2013, 1, 293-306.	4.8	77
40	Perrault Syndrome Is Caused by Recessive Mutations in CLPP, Encoding a Mitochondrial ATP-Dependent Chambered Protease. American Journal of Human Genetics, 2013, 92, 605-613.	6.2	186
41	LRIG2 Mutations Cause Urofacial Syndrome. American Journal of Human Genetics, 2013, 92, 259-264.	6.2	63
42	Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the <i>KCNQ1</i> Locus From Temporal Changes in Imprinting Status in Human Islets. Diabetes, 2013, 62, 987-992.	0.6	112
43	Stem cellâ€derived hepatocytes as a predictive model for drugâ€induced liver injury: are we there yet?. British Journal of Clinical Pharmacology, 2013, 75, 885-896.	2.4	68
44	A Novel Immunomodulator, FTY-720 Reverses Existing Cardiac Hypertrophy and Fibrosis From Pressure Overload by Targeting NFAT (Nuclear Factor of Activated T-cells) Signaling and Periostin. Circulation: Heart Failure, 2013, 6, 833-844.	3.9	57
45	Proteomeâ€wide analyses of human hepatocytes during differentiation and dedifferentiation. Hepatology, 2013, 58, 799-809.	7.3	113
46	Optical Classification of Human Embryonic Stem Cells. , 2013, , .		O
46		16.2	0 410
	Optical Classification of Human Embryonic Stem Cells. , 2013, , . Human Î ² Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated,	16.2	
47	Optical Classification of Human Embryonic Stem Cells., 2013, , . Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 435-448. The self-orientation of mammalian cells in optical tweezersâ€"the importance of the nucleus. Physical		410
47	Optical Classification of Human Embryonic Stem Cells., 2013, , . Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 435-448. The self-orientation of mammalian cells in optical tweezersâ€"the importance of the nucleus. Physical Biology, 2012, 9, 024001. Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of	1.8	410
48	Optical Classification of Human Embryonic Stem Cells., 2013, , . Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 435-448. The self-orientation of mammalian cells in optical tweezersâ€"the importance of the nucleus. Physical Biology, 2012, 9, 024001. Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans. Hepatology, 2012, 56, 1108-1116. Understanding the role of SOX9 in acquired diseases: lessons from development. Trends in Molecular	1.8 7.3	410 6 81
47 48 49 50	Optical Classification of Human Embryonic Stem Cells., 2013, , . Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 435-448. The self-orientation of mammalian cells in optical tweezers—the importance of the nucleus. Physical Biology, 2012, 9, 024001. Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans. Hepatology, 2012, 56, 1108-1116. Understanding the role of SOX9 in acquired diseases: lessons from development. Trends in Molecular Medicine, 2011, 17, 166-174.	1.8 7.3 6.7	410 6 81 111
47 48 49 50	Optical Classification of Human Embryonic Stem Cells., 2013, , . Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 435-448. The self-orientation of mammalian cells in optical tweezersâ€"the importance of the nucleus. Physical Biology, 2012, 9, 024001. Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans. Hepatology, 2012, 56, 1108-1116. Understanding the role of SOX9 in acquired diseases: lessons from development. Trends in Molecular Medicine, 2011, 17, 166-174. Assessing the Safety of Stem Cell Therapeutics. Cell Stem Cell, 2011, 8, 618-628. Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like	1.8 7.3 6.7	410 6 81 111 205

#	Article	IF	CITATIONS
55	Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening. Stem Cell Research, 2010, 5, 4-22.	0.7	66
56	Analysis of SOX2 expression in developing human testis and germ cell neoplasia. International Journal of Developmental Biology, 2010, 54, 755-760.	0.6	42
57	Centriolar Association of ALMS1 and Likely Centrosomal Functions of the ALMS Motif–containing Proteins C10orf90 and KIAA1731. Molecular Biology of the Cell, 2010, 21, 3617-3629.	2.1	97
58	Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction, 2010, 139, 85-97.	2.6	342
59	In vitro expression of NGN3 identifies RAB3B as the predominant Ras-associated GTP-binding protein 3 family member in human islets. Journal of Endocrinology, 2010, 207, 151-161.	2.6	22
60	Transcriptional regulation of the Alstr \tilde{A} ¶m syndrome gene ALMS1 by members of the RFX family and Sp1. Gene, 2010, 460, 20-29.	2.2	27
61	Inactivation of Six2 in mouse identifies a novel genetic mechanism controlling development and growth of the cranial base. Developmental Biology, 2010, 344, 720-730.	2.0	38
62	Inactivating < i> PAPSS2 < /i> Mutations in a Patient with Premature Pubarche. New England Journal of Medicine, 2009, 360, 2310-2318.	27.0	139
63	Derivation of a novel undifferentiated human foetal phenotype in serumâ€free cultures with BMPâ€2. Journal of Cellular and Molecular Medicine, 2009, 13, 3541-3555.	3.6	4
64	Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomaterialia, 2009, 5, 2063-2071.	8.3	68
65	The adrenal cortex and sexual differentiation during early human development. Reviews in Endocrine and Metabolic Disorders, 2009, 10, 43-49.	5.7	12
66	Induction of a disintegrin and metalloprotease 33 during embryonic lung development and the influence of IL-13 or maternal allergy. Journal of Allergy and Clinical Immunology, 2009, 124, 590-597.e11.	2.9	21
67	The soluble form of a disintegrin and metalloprotease 33 promotes angiogenesis: Implications for airway remodeling in asthma. Journal of Allergy and Clinical Immunology, 2008, 121, 1400-1406.e4.	2.9	94
68	Weighing up \hat{I}^2 -cell mass in mice and humans: Self-renewal, progenitors or stem cells?. Molecular and Cellular Endocrinology, 2008, 288, 79-85.	3.2	39
69	Embryonic stem cells to beta-cells by understanding pancreas development. Molecular and Cellular Endocrinology, 2008, 288, 86-94.	3.2	29
70	Commonalities in the endocrinology of stem cell biology and organ regeneration. Molecular and Cellular Endocrinology, 2008, 288, 1-5.	3.2	3
71	The Early Human Germ Cell Lineage Does Not Express SOX2 During In Vivo Development or upon In Vitro Culture1. Biology of Reproduction, 2008, 78, 852-858.	2.7	116
72	Ectopic SOX9 Mediates Extracellular Matrix Deposition Characteristic of Organ Fibrosis. Journal of Biological Chemistry, 2008, 283, 14063-14071.	3.4	100

#	Article	IF	CITATIONS
73	The Diabetic Phenotype in <i>HNF4A</i> Mutation Carriers Is Moderated By the Expression of <i>HNF4A</i> Isoforms From the P1 Promoter During Fetal Development. Diabetes, 2008, 57, 1745-1752.	0.6	64
74	Deoxyribonucleic Acid Methylation Controls Cell Type-Specific Expression of Steroidogenic Factor 1. Endocrinology, 2008, 149, 5599-5609.	2.8	33
75	Cushing's syndrome in women with polycystic ovaries and hyperandrogenism. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 778-783.	2.8	14
76	Phospholamban and sarcolipin are maintained in the endoplasmic reticulum by retrieval from the ER-Golgi intermediate compartment. Cardiovascular Research, 2007, 74, 114-123.	3.8	13
77	Age-specific changes in sex steroid biosynthesis and sex development. Best Practice and Research in Clinical Endocrinology and Metabolism, 2007, 21, 393-401.	4.7	29
78	The human fetal adrenal cortex and the window of sexual differentiation. Trends in Endocrinology and Metabolism, 2006, 17, 391-397.	7.1	53
79	Evaluating Human Embryonic Germ Cells: Concord and Conflict as Pluripotent Stem Cells. Stem Cells, 2006, 24, 212-220.	3.2	57
80	Characterization and Multipotentiality of Human Fetal Femur-Derived Cells: Implications for Skeletal Tissue Regeneration. Stem Cells, 2006, 24, 1042-1053.	3.2	92
81	In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development. Journal of Clinical Investigation, 2006, 116, 953-960.	8.2	235
82	Subcellular Localization of ALMS1 Supports Involvement of Centrosome and Basal Body Dysfunction in the Pathogenesis of Obesity, Insulin Resistance, and Type 2 Diabetes. Diabetes, 2005, 54, 1581-1587.	0.6	212
83	Human embryonic germ cells for future neuronal replacement therapy. Brain Research Bulletin, 2005, 68, 76-82.	3.0	22
84	Tissue-specific knockouts of steroidogenic factor 1. Molecular and Cellular Endocrinology, 2004, 215, 89-94.	3.2	49
85	Derivation of Human Embryonic Germ Cells: An Alternative Source of Pluripotent Stem Cells. Stem Cells, 2003, 21, 598-609.	3.2	125
86	Development of a Transgenic Green Fluorescent Protein Lineage Marker for Steroidogenic Factor 1. Molecular Endocrinology, 2002, 16, 2360-2370.	3.7	64
87	Steroidogenic Factor 1: an Essential Mediator of Endocrine Development. Endocrine Reviews, 2002, 57, 19-36.	6.7	325
88	Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nature Genetics, 2002, 31, 79-83.	21.4	291
89	Slugs and snails, or sugar and spice?: Sex determination and sexual differentiation. Biochemist, 2002, 24, 12-15.	0.5	0
90	SF-1: a critical mediator of steroidogenesis. Molecular and Cellular Endocrinology, 2001, 171, 5-7.	3.2	46

#	Article	IF	CITATION
91	Expression Profiles of SF-1, DAX1, and CYP17 in the Human Fetal Adrenal Gland: Potential Interactions in Gene Regulation. Molecular Endocrinology, 2001, 15, 57-68.	3.7	160
92	Expression Profiles of SF-1, DAX1, and CYP17 in the Human Fetal Adrenal Gland: Potential Interactions in Gene Regulation. Molecular Endocrinology, 2001, 15, 57-68.	3.7	45
93	Steroidogenic factor 1 (SF-1) is essential for ovarian development and function. Molecular and Cellular Endocrinology, 2000, 163, 27-32.	3.2	48
94	Culture of the Human Germ Cell Lineage. , 0, , 107-132.		2