Luis A Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8728557/publications.pdf

Version: 2024-02-01

		218381	315357
59	1,687	26	38
papers	citations	h-index	g-index
62	62	62	1026
62	62	62	1836
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bioactive Natural Products in Actinobacteria Isolated in Rainwater From Storm Clouds Transported by Western Winds in Spain. Frontiers in Microbiology, 2021, 12, 773095.	1.5	12
2	Desertomycin G, a New Antibiotic with Activity against Mycobacterium tuberculosis and Human Breast Tumor Cell Lines Produced by Streptomyces althioticus MSM3, Isolated from the Cantabrian Sea Intertidal Macroalgae Ulva sp Marine Drugs, 2019, 17, 114.	2.2	35
3	New 3-Hydroxyquinaldic Acid Derivatives from Cultures of the Marine Derived Actinomycete Streptomyces cyaneofuscatus M-157. Marine Drugs, 2018, 16, 371.	2.2	31
4	Anthracimycin B, a Potent Antibiotic against Gram-Positive Bacteria Isolated from Cultures of the Deep-Sea Actinomycete Streptomyces cyaneofuscatus M-169. Marine Drugs, 2018, 16, 406.	2.2	34
5	Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products. Frontiers in Microbiology, 2018, 9, 773.	1.5	21
6	Branimycins B and C, Antibiotics Produced by the Abyssal Actinobacterium <i>Pseudonocardia carboxydivorans</i> M-227. Journal of Natural Products, 2017, 80, 569-573.	1.5	46
7	Pharmacological Potential of Phylogenetically Diverse Actinobacteria Isolated from Deep-Sea Coral Ecosystems of the Submarine Avilés Canyon in the Cantabrian Sea. Microbial Ecology, 2017, 73, 338-352.	1.4	33
8	Lobophorin K, a New Natural Product with Cytotoxic Activity Produced by Streptomyces sp. M-207 Associated with the Deep-Sea Coral Lophelia pertusa. Marine Drugs, 2017, 15, 144.	2.2	58
9	Paulomycin G, a New Natural Product with Cytotoxic Activity against Tumor Cell Lines Produced by Deep-Sea Sediment Derived Micromonospora matsumotoense M-412 from the Avilés Canyon in the Cantabrian Sea. Marine Drugs, 2017, 15, 271.	2.2	42
10	Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments. Microbial Ecology, 2016, 71, 375-386.	1.4	25
11	Myceligenerans cantabricum sp. nov., a barotolerant actinobacterium isolated from a deep cold-water coral. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1328-1334.	0.8	23
12	Two Streptomyces Species Producing Antibiotic, Antitumor, and Anti-Inflammatory Compounds Are Widespread Among Intertidal Macroalgae and Deep-Sea Coral Reef Invertebrates from the Central Cantabrian Sea. Microbial Ecology, 2015, 69, 512-524.	1.4	56
13	Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya. Archives of Microbiology, 2014, 196, 345-355.	1.0	31
14	Influence of controlled inoculation of malolactic fermentation on the sensory properties of industrial cider. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 853-867.	1.4	13
15	Prevalent lactic acid bacteria in cider cellars and efficiency of Oenococcus oeni strains. Food Microbiology, 2012, 32, 32-37.	2.1	26
16	Effects of SO ₂ on lactic acid bacteria physiology when used as a preservative compound in malolactic fermentation. Journal of the Institute of Brewing, 2012, 118, 89-96.	0.8	8
17	Cleaning in Place. , 2011, , 983-997.		O
18	Application of flow cytometry to industrial microbial bioprocesses. Biochemical Engineering Journal, 2010, 48, 385-407.	1.8	242

#	Article	IF	Citations
19	Population dynamics of lactic acid bacteria during spontaneous malolactic fermentation in industrial cider. Food Research International, 2010, 43, 2101-2107.	2.9	31
20	Nutrient balance and metabolic analysis in a Kluyveromyces marxianus fermentation with lactose-added whey. Brazilian Journal of Chemical Engineering, 2009, 26, 445-456.	0.7	25
21	Quantitative Approach to Determining the Contribution of Viable-but-Nonculturable Subpopulations to Malolactic Fermentation Processes. Applied and Environmental Microbiology, 2009, 75, 2977-2981.	1.4	40
22	Taking advantage of the flow cytometry technique for improving malolactic starters production. European Food Research and Technology, 2009, 228, 543-552.	1.6	5
23	Whey Vinegar. , 2009, , 273-288.		6
24	Application of Flow Cytometry to Segregated Kinetic Modeling Based on the Physiological States of Microorganisms. Applied and Environmental Microbiology, 2007, 73, 3993-4000.	1.4	42
25	Mixed cultures of Serratia marcescensand Kluyveromyces fragilisfor simultaneous protease production and COD removal of whey. Journal of Applied Microbiology, 2007, 103, 864-870.	1.4	10
26	Volatile Compounds in Cider: Inoculation Time and Fermentation Temperature Effects. Journal of the Institute of Brewing, 2006, 112, 210-214.	0.8	29
27	Use of Flow Cytometry To Follow the Physiological States of Microorganisms in Cider Fermentation Processes. Applied and Environmental Microbiology, 2006, 72, 6725-6733.	1.4	40
28	Influence of a malolactic starter on the quality of the cider produced on an industrial scale. European Food Research and Technology, 2005, 221, 168-174.	1.6	6
29	Fermentation of individual proteins for protease production by Serratia marcescens. Biochemical Engineering Journal, 2004, 19, 147-153.	1.8	12
30	Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 699-704.	1.4	16
31	Ethanol and ethyl acetate production during the cider fermentation from laboratory to industrial scale. Process Biochemistry, 2003, 38, 1451-1456.	1.8	40
32	A Note - Production of Vinegar from Whey. Journal of the Institute of Brewing, 2003, 109, 356-358.	0.8	28
33	The Effect of SO2on the Production of Ethanol, Acetaldehyde, Organic Acids, and Flavor Volatiles during Industrial Cider Fermentation. Journal of Agricultural and Food Chemistry, 2003, 51, 3455-3459.	2.4	43
34	Stirring and Mixing Effects at Different Cider Fermentation Scales. Food and Bioproducts Processing, 2002, 80, 129-134.	1.8	12
35	Taking Advantage of Temperature Changes to Determine the Progress of a Cider Fermentation. Journal of the Institute of Brewing, 2002, 108, 32-33.	0.8	4
36	Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochemistry, 2001, 36, 507-515.	1.8	64

#	Article	IF	Citations
37	Controlled malolactic fermentation in cider using Oenococcus oeni immobilized in alginate beads and comparison with free cell fermentation. Enzyme and Microbial Technology, 2001, 28, 35-41.	1.6	33
38	Production of an Alcoholic Beverage by Fermentation of Whey Permeate with <i>Kluyveromyces fragilis </i> II: Aroma Composition. Journal of the Institute of Brewing, 2000, 106, 377-382.	0.8	13
39	Production of an Alcoholic Beverage by Fermentation of Whey Permeate with <i>Kluyveromyces fragilis </i> I: Primary Metabolism. Journal of the Institute of Brewing, 2000, 106, 367-375.	0.8	24
40	Analysis and description of the evolution of alginate immobilised cells systems. Journal of Biotechnology, 2000, 80, 203-215.	1.9	18
41	Simultaneous and sequential fermentations with yeast and lactic acid bacteria in apple juice. Journal of Industrial Microbiology and Biotechnology, 1999, 22, 48-51.	1.4	21
42	Protein diffusion in alginate beads monitored by confocal microscopy. The application of wavelets for data reconstruction and analysis. Journal of Industrial Microbiology and Biotechnology, 1999, 23, 155-165.	1.4	16
43	Changes in Organic Acids During Malolactic Fermentation at Different Temperatures in Yeast-Fermented Apple Juice. Journal of the Institute of Brewing, 1999, 105, 191-196.	0.8	31
44	Organic Acids in Cider with Simultaneous Inoculation of Yeast and Malolactic Bacteria: Effect of Fermentation Temperature. Journal of the Institute of Brewing, 1999, 105, 229-232.	0.8	16
45	Comparison of Bacillus subtilis and Serratia marcescens as protease producers under different operating conditions. Journal of Bioscience and Bioengineering, 1999, 88, 35-40.	1.1	26
46	SIMULATION OF A TWO PHASE FLOW BY CFD: ANALYSIS OF THE COMPUTATIONAL METHOD. Chemical Engineering Communications, 1999, 173, 197-214.	1.5	2
47	Modelling and description of internal profiles in immobilized cells systems. Biochemical Engineering Journal, 1998, 1, 225-232.	1.8	16
48	The evolution of the structure of calcium alginate beads and cell leakage during protease production. Process Biochemistry, 1996, 31, 813-822.	1.8	10
49	Mixing power, external convection, and effectiveness in bioreactors. , 1996, 51, 131-140.		26
50	Application of neural networks for controlling and predicting quality parameters in beer fermentation. Journal of Industrial Microbiology, 1995, 15, 401-406.	0.9	12
51	?Diffusion? of microorganisms in calcium alginate beads. Biotechnology Letters, 1995, 9, 809-814.	0.5	18
52	MODELLING OF DIACETYL PRODUCTION DURING BEER FERMENTATION. Journal of the Institute of Brewing, 1994, 100, 179-183.	0.8	46
53	Mechanism for mixing and homogenization in beer fermentation. Bioprocess and Biosystems Engineering, 1994, 10, 179-184.	0.5	19
54	Prediction of ester production in industrial beer fermentation. Enzyme and Microbial Technology, 1994, 16, 66-71.	1.6	17

Luis A Garcia

#	Article	IF	CITATIONS
55	Fusel Alcohols Production in Beer Fermentation Processes. Process Biochemistry, 1994, 29, 303-309.	1.8	26
56	Mixing in unstirred batch fermenters. The Chemical Engineering Journal, 1993, 51, B57-B61.	0.4	12
57	Diffusion of proteases in calcium alginate beads. Enzyme and Microbial Technology, 1992, 14, 586-590.	1.6	44
58	Role of trehalose in the spores of Streptomyces. FEMS Microbiology Letters, 1986, 35, 49-54.	0.7	43
59	Intracellular pool ofStreptomycesspores: Amino acids, nucleosides, adenine nucleotide levels and energy charge. FEMS Microbiology Letters, 1983, 19, 215-219.	0.7	8