Maria Eriksson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8728521/publications.pdf

Version: 2024-02-01

394421 254184 5,020 45 19 43 citations h-index g-index papers 46 46 46 4946 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature, 2003, 423, 293-298.	27.8	1,925
2	Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8963-8968.	7.1	988
3	Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8703-8708.	7.1	685
4	Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3250-3255.	7.1	255
5	Increased expression of the Hutchinson–Gilford progeria syndrome truncated lamin A transcript during cell aging. European Journal of Human Genetics, 2009, 17, 928-937.	2.8	113
6	Somatic mutagenesis in satellite cells associates with human skeletal muscle aging. Nature Communications, 2018, 9, 800.	12.8	94
7	The role of epigenetics in renal ageing. Nature Reviews Nephrology, 2017, 13, 471-482.	9.6	86
8	Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson–Gilford Progeria Syndrome. Nature Communications, 2019, 10, 4990.	12.8	85
9	Stem cell depletion in Hutchinson–Gilford progeria syndrome. Aging Cell, 2011, 10, 1011-1020.	6.7	84
10	Global genome splicing analysis reveals an increased number of alternatively spliced genes with aging. Aging Cell, 2016, 15, 267-278.	6.7	79
11	Targeted transgenic expression of the mutation causing Hutchinson-Gilford progeria syndrome leads to proliferative and degenerative epidermal disease. Journal of Cell Science, 2008, 121, 969-978.	2.0	76
12	Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. Journal of Clinical Investigation, 2018, 129, 531-545.	8.2	75
13	Whole genome DNA sequencing provides an atlas of somatic mutagenesis in healthy human cells and identifies a tumor-prone cell type. Genome Biology, 2019, 20, 285.	8.8	46
14	Expression of the Hutchinson-Gilford Progeria Mutation during Osteoblast Development Results in Loss of Osteocytes, Irregular Mineralization, and Poor Biomechanical Properties. Journal of Biological Chemistry, 2012, 287, 33512-33522.	3.4	39
15	Embryonic expression of the common progeroid lamin A splice mutation arrests postnatal skin development. Aging Cell, 2014, 13, 292-302.	6.7	36
16	Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Human Molecular Genetics, 2015, 24, 1305-1321.	2.9	30
17	Acute pulmonary hypertension and shortâ€ŧerm outcomes in severe Covidâ€19 patients needing intensive care. Acta Anaesthesiologica Scandinavica, 2021, 65, 761-769.	1.6	30
18	Rare progerin-expressing preadipocytes and adipocytes contribute to tissue depletion over time. Scientific Reports, 2017, 7, 4405.	3.3	24

#	Article	IF	Citations
19	Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects. FASEB Journal, 2015, 29, 3193-3205.	0.5	21
20	The association of body mass index, weight gain and central obesity with activity-related breathlessness: the Swedish Cardiopulmonary Bioimage Study. Thorax, 2019, 74, 958-964.	5.6	21
21	Comprehensive Cardiovascular Magnetic Resonance Diastolic Dysfunction Grading Shows Very Good Agreement Compared With Echocardiography. JACC: Cardiovascular Imaging, 2020, 13, 2530-2542.	5.3	19
22	Emerging candidate treatment strategies for Hutchinson-Gilford progeria syndrome. Biochemical Society Transactions, 2017, 45, 1279-1293.	3.4	18
23	Evidence for the Involvement of Lamins in Aging. Current Aging Science, 2010, 3, 81-89.	1.2	18
24	A small-molecule ICMT inhibitor delays senescence of Hutchinson-Gilford progeria syndrome cells. ELife, 2021, 10, .	6.0	17
25	Comparison Between the Montgomery-Asberg Depression Rating Scale–Self and the Beck Depression Inventory II in Primary Care. primary care companion for CNS disorders, The, 2015, 17, .	0.6	17
26	Low and High Expressing Alleles of the LMNA Gene: Implications for Laminopathy Disease Development. PLoS ONE, 2011, 6, e25472.	2.5	16
27	Accumulation of Progerin Affects the Symmetry of Cell Division and Is Associated with Impaired Wnt Signaling and the Mislocalization of Nuclear Envelope Proteins. Journal of Investigative Dermatology, 2019, 139, 2272-2280.e12.	0.7	15
28	Differential Expression of A-Type and B-Type Lamins during Hair Cycling. PLoS ONE, 2009, 4, e4114.	2.5	13
29	Somatic mutation that affects transcription factor binding upstream of CD55 in the temporal cortex of a late-onset Alzheimer disease patient. Human Molecular Genetics, 2019, 28, 2675-2685.	2.9	12
30	How can we estimate QALYs based on PHQ-9 scores? Equipercentile linking analysis of PHQ-9 and EQ-5D. Evidence-Based Mental Health, 2021, 24, 97-101.	4.5	11
31	Skin Disease in Laminopathy-Associated Premature Aging. Journal of Investigative Dermatology, 2015, 135, 2577-2583.	0.7	10
32	Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. International Review of Cell and Molecular Biology, 2019, 346, 157-200.	3.2	10
33	Expression of the Hutchinson-Gilford Progeria Mutation Leads to Aberrant Dentin Formation. Scientific Reports, 2018, 8, 15368.	3.3	9
34	Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation. PLoS ONE, 2015, 10, e0128917.	2.5	7
35	Challenges of proving a causal role of somatic mutations in the aging process. Aging Cell, 2022, 21, e13613.	6.7	7
36	Transient expression of an adenine base editor corrects the Hutchinson-Gilford progeria syndrome mutation and improves the skin phenotype in mice. Nature Communications, 2022, 13, .	12.8	7

#	Article	IF	CITATIONS
37	Analysis of somatic mutations identifies signs of selection during in vitro aging of primary dermal fibroblasts. Aging Cell, 2019, 18, e13010.	6.7	6
38	Targeting RASâ€converting enzyme 1 overcomes senescence and improves progeriaâ€like phenotypes of ZMPSTE24 deficiency. Aging Cell, 2020, 19, e13200.	6.7	5
39	A previously functional tetracycline-regulated transactivator fails to target gene expression to the bone. BMC Research Notes, $2011,4,282.$	1.4	4
40	Real-Time RT-PCR for CTG Repeat-Containing Genes. , 2004, 277, 077-084.		2
41	Reverting to old theories of ageing with new evidence for the role of somatic mutations. Nature Reviews Genetics, 2022, 23, 645-646.	16.3	2
42	Low Levels of the Reverse Transactivator Fail to Induce Target Transgene Expression in Vascular Smooth Muscle Cells. PLoS ONE, 2014, 9, e104098.	2.5	1
43	Splice-inhibition therapy targets progeria. Nature Medicine, 2021, 27, 377-379.	30.7	1
44	Base Editing in Progeria. New England Journal of Medicine, 2021, 384, 1364-1366.	27.0	1
45	SO042WHOLE GENOME SEQUENCING OF HUMAN KIDNEY PROGENITORS IDENTIFIES A MUTATION-PRONE CELL TYPE IN THE PROXIMAL TUBULE. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	O