
Ilker Hacihaliloglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8728312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bone Surface Localization in Ultrasound Using Image Phase-Based Features. Ultrasound in Medicine and Biology, 2009, 35, 1475-1487.	0.7	121
2	Adversarial Domain Adaptation forÂClassification of Prostate Histopathology Whole-Slide Images. Lecture Notes in Computer Science, 2018, 11071, 201-209.	1.0	69
3	Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images. Frontiers in Bioengineering and Biotechnology, 2019, 7, 102.	2.0	50
4	Convolution neural networks for real-time needle detection and localization in 2D ultrasound. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 647-657.	1.7	46
5	Local Phase Tensor Features for 3-D Ultrasound to Statistical Shape+Pose Spine Model Registration. IEEE Transactions on Medical Imaging, 2014, 33, 2167-2179.	5.4	45
6	Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 197-206.	1.7	45
7	Ultrasound imaging and segmentation of bone surfaces: A review. Technology, 2017, 05, 74-80.	1.4	42
8	Bone Segmentation and Fracture Detection in Ultrasound Using 3D Local Phase Features. Lecture Notes in Computer Science, 2008, 11, 287-295.	1.0	40
9	Automatic segmentation of bone surfaces from ultrasound using a filter-layer-guided CNN. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 775-783.	1.7	39
10	Automatic Bone Localization and Fracture Detection from Volumetric Ultrasound Images Using 3-D Local Phase Features. Ultrasound in Medicine and Biology, 2012, 38, 128-144.	0.7	37
11	Liver disease classification from ultrasound using multi-scale CNN. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1537-1548.	1.7	27
12	Simultaneous Segmentation and Classification of Bone Surfaces from Ultrasound Using a Multi-feature Guided CNN. Lecture Notes in Computer Science, 2018, , 134-142.	1.0	25
13	Automatic Adaptive Parameterization in Local Phase Feature-Based Bone Segmentation in Ultrasound. Ultrasound in Medicine and Biology, 2011, 37, 1689-703.	0.7	23
14	Learning needle tip localization from digital subtraction in 2D ultrasound. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1017-1026.	1.7	22
15	Enhancement of bone shadow region using local phase-based ultrasound transmission maps. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 951-960.	1.7	19
16	Non-iterative partial view 3D ultrasound to CT registration in ultrasound-guided computer-assisted orthopedic surgery. International Journal of Computer Assisted Radiology and Surgery, 2013, 8, 157-168.	1.7	18
17	Bone enhancement in ultrasound using local spectrum variations for guiding percutaneous scaphoid fracture fixation procedures. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 959-969.	1.7	18
18	Learning to Segment Brain Anatomy From 2D Ultrasound With Less Data. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1221-1234.	7.3	17

Ilker Hacihaliloglu

#	Article	IF	CITATIONS
19	A computationally efficient 3D/2D registration method based on image gradient direction probability density function. Neurocomputing, 2017, 229, 100-108.	3.5	14
20	Signal attenuation maps for needle enhancement and localization in 2D ultrasound. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 363-374.	1.7	14
21	Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1477-1485.	1.7	14
22	Automatic extraction of bone surfaces from 3D ultrasound images in orthopaedic trauma cases. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 1279-1287.	1.7	13
23	Automatic real-time CNN-based neonatal brain ventricles segmentation. , 2018, , .		13
24	Knee-Cartilage Segmentation and Thickness Measurement from 2D Ultrasound. Journal of Imaging, 2019, 5, 43.	1.7	13
25	Time-aware deep neural networks for needle tip localization in 2D ultrasound. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 819-827.	1.7	13
26	Volume-specific parameter optimization of 3D local phase features for improved extraction of bone surfaces in ultrasound. International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10, 461-473.	1.2	12
27	Statistical Shape Model to 3D Ultrasound Registration for Spine Interventions Using Enhanced Local Phase Features. Lecture Notes in Computer Science, 2013, 16, 361-368.	1.0	12
28	Robust real-time bone surfaces segmentation from ultrasound using a local phase tensor-guided CNN. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1127-1135.	1.7	11
29	Single Shot Needle Tip Localization in 2D Ultrasound. Lecture Notes in Computer Science, 2019, , 637-645.	1.0	9
30	Multi-feature Multi-Scale CNN-Derived COVID-19 Classification from Lung Ultrasound Data. , 2021, 2021, 2618-2621.		8
31	Enhancement and automated segmentation of ultrasound knee cartilage for early diagnosis of knee osteoarthritis. , 2018, , .		6
32	GAN-Based Realistic Bone Ultrasound Image and Label Synthesis for Improved Segmentation. Lecture Notes in Computer Science, 2020, , 795-804.	1.0	6
33	Validating a Semi-Automated Technique for Segmenting Femoral Articular Cartilage on Ultrasound Images. Cartilage, 2022, 13, 194760352210930.	1.4	6
34	Enhancement of Needle Tip and Shaft from 2D Ultrasound Using Signal Transmission Maps. Lecture Notes in Computer Science, 2016, , 362-369.	1.0	5
35	Localization of Bone Surfaces from Ultrasound Data Using Local Phase Information and Signal Transmission Maps. Lecture Notes in Computer Science, 2018, , 1-11.	1.0	5
36	The Rheology of the Carotid Sinus: A Path Toward Bioinspired Intervention. Frontiers in Bioengineering and Biotechnology, 2021, 9, 678048.	2.0	5

Ilker Hacihaliloglu

#	Article	IF	CITATIONS
37	Improved Automatic Bone Segmentation Using Large-Scale Simulated Ultrasound Data to Segment Real Ultrasound Bone Surface Data. , 2020, , .		5
38	Fast and Accurate Data Extraction for Near Real-Time Registration of 3-D Ultrasound and Computed Tomography in Orthopedic Surgery. Ultrasound in Medicine and Biology, 2015, 41, 3194-3204.	0.7	4
39	Robust Bone Shadow Segmentation fromÂ2D Ultrasound Through Task Decomposition. Lecture Notes in Computer Science, 2020, , 805-814.	1.0	4
40	3D Ultrasound for Orthopedic Interventions. Advances in Experimental Medicine and Biology, 2018, 1093, 113-129.	0.8	3
41	Real-time non-radiation-based navigation using 3D ultrasound for pedicle screw placement. Spine Journal, 2020, 20, S134-S135.	0.6	2
42	Realistic Ultrasound Image Synthesis for Improved Classification of Liver Disease. Lecture Notes in Computer Science, 2021, , 179-188.	1.0	1
43	Interventional imaging: Ultrasound. , 2020, , 701-720.		0
44	IJCARS - IPCAI 2020 special issue: 11th conference on information processing for computer-assisted interventions - part 1. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 737-738.	1.7	0
45	565: AUTOMATED IMAGE PROCESSING WITH POINT-OF-CARE OCULAR ULTRASOUND FOR REAL-TIME ICP MONITORING. Critical Care Medicine, 2022, 50, 274-274.	0.4	0