Mitsumasa Osada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8728213/publications.pdf Version: 2024-02-01

MITSHMASA OSADA

#	Article	IF	CITATIONS
1	Catalytic effects of NaOH and ZrO2 for partial oxidative gasification of n-hexadecane and lignin in supercritical waterâ~†. Fuel, 2003, 82, 545-552.	3.4	206
2	Low-Temperature Catalytic Gasification of Lignin and Cellulose with a Ruthenium Catalyst in Supercritical Water. Energy & Fuels, 2004, 18, 327-333.	2.5	195
3	CATALYTIC GASIFICATION OF WOOD BIOMASS IN SUBCRITICAL AND SUPERCRITICAL WATER. Combustion Science and Technology, 2006, 178, 537-552.	1.2	149
4	Stability of Supported Ruthenium Catalysts for Lignin Gasification in Supercritical Water. Energy & amp; Fuels, 2006, 20, 2337-2343.	2.5	119
5	Water Density Effect on Lignin Gasification over Supported Noble Metal Catalysts in Supercritical Water. Energy & Fuels, 2006, 20, 930-935.	2.5	103
6	Hydrogen production from woody biomass over supported metal catalysts in supercritical water. Catalysis Today, 2009, 146, 192-195.	2.2	100
7	Gasification of Alkylphenols with Supported Noble Metal Catalysts in Supercritical Water. Industrial & Engineering Chemistry Research, 2003, 42, 4277-4282.	1.8	80
8	Effect of Sulfur on Catalytic Gasification of Lignin in Supercritical Water. Energy & Fuels, 2007, 21, 1400-1405.	2.5	80
9	Reaction Pathway for Catalytic Gasification of Lignin in Presence of Sulfur in Supercritical Water. Energy & Fuels, 2007, 21, 1854-1858.	2.5	74
10	Non-catalytic synthesis of Chromogen I and III from N-acetyl-d-glucosamine in high-temperature water. Green Chemistry, 2013, 15, 2960.	4.6	73
11	Effects of supercritical water and mechanochemical grinding treatments on physicochemical properties of chitin. Carbohydrate Polymers, 2013, 92, 1573-1578.	5.1	60
12	Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673 K. Applied Catalysis A: General, 2003, 245, 333-341.	2.2	58
13	Lignin Gasification over Supported Ruthenium Trivalent Salts in Supercritical Water. Energy & Fuels, 2008, 22, 1485-1492.	2.5	56
14	Gasification of Sugarcane Bagasse over Supported Ruthenium Catalysts in Supercritical Water. Energy & Fuels, 2012, 26, 3179-3186.	2.5	52
15	Subcritical Water Regeneration of Supported Ruthenium Catalyst Poisoned by Sulfur. Energy & Fuels, 2008, 22, 845-849.	2.5	48
16	NMR spectroscopic structural characterization of a water-soluble β-(1 → 3, 1 → 6)-glucan from Aureobasidium pullulans. Carbohydrate Polymers, 2017, 174, 876-886.	5.1	47
17	Effect of sub- and supercritical water pretreatment on enzymatic degradation of chitin. Carbohydrate Polymers, 2012, 88, 308-312.	5.1	40
18	Water density dependence of formaldehyde reaction in supercritical water. Journal of Supercritical Fluids, 2004, 28, 219-224.	1.6	36

MITSUMASA OSADA

#	Article	IF	CITATIONS
19	EXAFS Study on Structural Change of Charcoal-supported Ruthenium Catalysts during Lignin Gasification in Supercritical Water. Catalysis Letters, 2008, 122, 188-195.	1.4	34
20	Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation. Carbohydrate Polymers, 2015, 134, 718-725.	5.1	32
21	Hydrogenation of benzothiophene-free naphthalene over charcoal-supported metal catalysts in supercritical carbon dioxide solvent. Applied Catalysis A: General, 2007, 331, 1-7.	2.2	30
22	Estimation of the degree of hydrogen bonding between quinoline and water by ultraviolet–visible absorbance spectroscopy in sub- and supercritical water. Journal of Chemical Physics, 2003, 118, 4573-4577.	1.2	29
23	Effect of purification method of β-chitin from squid pen on the properties of β-chitin nanofibers. International Journal of Biological Macromolecules, 2016, 91, 987-993.	3.6	29
24	Conversion of N-acetyl-d-glucosamine to nitrogen-containing chemicals in high-temperature water. Fuel Processing Technology, 2019, 195, 106154.	3.7	22
25	Terephthalic acid synthesis at higher concentrations in highâ€ŧemperature liquid water. 1. Effect of oxygen feed method. AICHE Journal, 2009, 55, 710-716.	1.8	18
26	Non-catalytic dehydration of N,N′-diacetylchitobiose in high-temperature water. RSC Advances, 2014, 4, 33651-33657.	1.7	17
27	Hydrothermal Gelation of Pure Cellulose Nanofiber Dispersions. ACS Applied Polymer Materials, 2019, 1, 1045-1053.	2.0	17
28	Preparation of β-chitin nanofiber aerogels by lyophilization. International Journal of Biological Macromolecules, 2019, 126, 1145-1149.	3.6	17
29	Two-dimensional NMR data of a water-soluble β-(1→3, 1→6)-glucan from Aureobasidium pullulans and schizophyllum commune. Data in Brief, 2017, 15, 382-388.	0.5	16
30	Effect of acidity on the physicochemical properties of α- and β-chitin nanofibers. International Journal of Biological Macromolecules, 2017, 102, 358-366.	3.6	15
31	Terephthalic acid synthesis at higher concentrations in highâ€ŧemperature liquid water. 2. Eliminating undesired byproducts. AICHE Journal, 2009, 55, 1530-1537.	1.8	14
32	Self-Sustaining Cellulose Nanofiber Hydrogel Produced by Hydrothermal Gelation without Additives. ACS Biomaterials Science and Engineering, 2018, 4, 1536-1545.	2.6	14
33	Depolymerization of Poly(ethylene terephthalate) to Terephthalic Acid and Ethylene Glycol in High-temperature Liquid Water. Chemistry Letters, 2009, 38, 268-269.	0.7	13
34	Lignin Gasification over Charcoal-supported Palladium and Nickel Bimetal Catalysts in Supercritical Water. Chemistry Letters, 2010, 39, 1251-1253.	0.7	13
35	Non-catalytic conversion of chitin into Chromogen I in high-temperature water. International Journal of Biological Macromolecules, 2019, 136, 994-999.	3.6	13
36	Supercritical Water Gasification of Organosolv Lignin over a Graphite-supported Ruthenium Metal Catalyst. Chemistry Letters, 2012, 41, 1453-1455.	0.7	12

MITSUMASA OSADA

#	Article	IF	CITATIONS
37	Parameters of hydrothermal gelation of chitin nanofibers determined using a severity factor. Cellulose, 2018, 25, 6873-6885.	2.4	9
38	Systematic dynamic viscoelasticity measurements for chitin nanofibers prepared with various concentrations, disintegration times, acidities, and crystalline structures. International Journal of Biological Macromolecules, 2018, 115, 431-437.	3.6	8
39	Effect of the degree of acetylation on the physicochemical properties of α-chitin nanofibers. International Journal of Biological Macromolecules, 2020, 155, 350-357.	3.6	8
40	Amination ofn-Hexanol in Supercritical Water. Environmental Science & Technology, 2005, 39, 9721-9724.	4.6	4
41	Utilization of Supercritical Fluid for Catalytic Thermochemical Conversions of Woody-Biomass Related Compounds. , 2015, , 437-453.		4
42	Environment-friendly utilization of squid pen with water: Production of β-chitin nanofibers and peptides for lowering blood pressure. International Journal of Biological Macromolecules, 2021, 189, 921-929.	3.6	4
43	Preparation of hypoallergenic ovalbumin by high-temperature water treatment. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2442-2449.	0.6	3
44	Influence of Temperature, Water Content and C/N Ratio on the Aerobic Fermentation Rate of Woody Biomass. Kagaku Kogaku Ronbunshu, 2017, 43, 231-237.	0.1	3
45	Kinetic Analysis of Sodium Lactate Synthesis from Glycerol in Alkaline Aqueous Solution at High Temperature and Prediction of Optimum Conditions. Kagaku Kogaku Ronbunshu, 2016, 42, 148-154.	0.1	2
46	Influence of Addition of Functionalized Alumina Particles on CO2 Stripping from Amine Solvents. Energy Procedia, 2017, 114, 2024-2029.	1.8	1
47	Continuous Toluene Hydrogenation System Using Compressed Carbon Dioxide. Journal of Chemical Engineering of Japan, 2010, 43, 82-86.	0.3	1
48	Effect of Lewis and BrÃ,nsted Acids on Conversion of Chitin Monomer <i>N</i> -Acetyl-D-Glucosamine (GlcNAc) to Furan Derivatives in [Bmim]Cl Ionic Liquid. Kagaku Kogaku Ronbunshu, 2019, 45, 141-146.	0.1	1
49	Effective Utilization of Woody Biomass Using Converge Mill and Enzymatic Saccharification Characteristics. Journal of the Society of Powder Technology, Japan, 2012, 49, 675-682.	0.0	0
50	Optimization of Cathode Catalyst Layer of PEFC Using Silk-Derived Activated Carbon by 2-Step Mixing Method. ECS Transactions, 2017, 75, 149-154.	0.3	0
51	[Review: Symposium on Applied Glycoscience] Development of Functional Food and Materials Utilizing Local Carbohydrate Resources. Bulletin of Applied Glycoscience, 2013, 3, 159-165.	0.0	0
52	Chemical Engineering Experiments Utilizing Handheld Technology and Sensors at National College of Technology. Journal of Jsee, 2013, 61, 4_43-4_48.	0.0	0
53	Preparation of Self-Sustaining Hydrogels by Hydrothermal Gelation of Biomass-Derived Nanofibers. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2019, 29, 194-198.	0.1	0
54	[Mini Review] Production of Self-sustaining Hydrogels by Hydrothermal Gelation of Cellulose and Chitin Nanofiber Dispersions. Bulletin of Applied Glycoscience, 2019, 9, 172-176.	0.0	0