Ch Laberty-Robert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8727177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chemical Society Reviews, 2011, 40, 961.	38.1	473
2	Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochimica Acta, 2004, 49, 905-912.	5.2	377
3	High power density electrodes for Carbon supercapacitor applications. Electrochimica Acta, 2005, 50, 4174-4181.	5.2	327
4	"Chimie douceâ€: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 2010, 13, 3-39.	0.5	270
5	Solâ^'Gel-Derived Ceria Nanoarchitectures:  Synthesis, Characterization, and Electrical Properties. Chemistry of Materials, 2006, 18, 50-58.	6.7	219
6	Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 2014, 6, 6267-6292.	5.6	168
7	Preparation and characterization of La1–xSrxMnO3+l̃′ (0⩽x⩽0.6) powder by sol–gel processing. Solic Sciences, 2002, 4, 125-133.	l State 3.2	164
8	Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials, 2014, 26, 221-238.	6.7	147
9	Morphological and Structural Evolution of Co ₃ O ₄ Nanoparticles Revealed by <i>in Situ</i> Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidation. ACS Nano, 2019, 13, 11372-11381.	14.6	140
10	Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2017, 8, 3466-3472.	4.6	109
11	Powder synthesis of nanocrystalline ZrO2–8%Y2O3 via a polymerization route. Materials Research Bulletin, 2001, 36, 2083-2101.	5.2	98
12	Dense yttria stabilized zirconia: sintering and microstructure. Ceramics International, 2003, 29, 151-158.	4.8	89
13	A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. Energy and Environmental Science, 2013, 6, 2706.	30.8	83
14	Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Journal of Power Sources, 2018, 378, 48-52.	7.8	77
15	Ionic Nanowires at 600 °C: Using Nanoarchitecture to Optimize Electrical Transport in Nanocrystalline Gadolinium-Doped Ceria. Advanced Materials, 2007, 19, 1734-1739.	21.0	68
16	Mesoporous thin film WO ₃ photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. Sustainable Energy and Fuels, 2017, 1, 145-153.	4.9	65
17	New Fe ₂ TiO ₅ -based nanoheterostructured mesoporous photoanodes with improved visible light photoresponses. Journal of Materials Chemistry A, 2014, 2, 6567-6577.	10.3	59
18	Mesoporous α-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation. Physical Chemistry Chemical Physics, 2012, 14, 13224.	2.8	55

#	Article	IF	CITATIONS
19	Synthesis by sol–gel route of oxyapatite powders for dense ceramics: Applications as electrolytes for solid oxide fuel cells. Journal of the European Ceramic Society, 2005, 25, 2665-2668.	5.7	53
20	Original Fuelâ€Cell Membranes from Crosslinked Terpolymers via a "Sol–gel―Strategy. Advanced Functional Materials, 2010, 20, 1090-1098.	14.9	53
21	Synthesis and Electrochemical Performance of the Orthorhombic Li ₂ Fe(SO ₄) ₂ Polymorph for Li-Ion Batteries. Chemistry of Materials, 2014, 26, 4178-4189.	6.7	53
22	Synthesis of La9.33Si6O26 Pore–Solid Nanoarchitectures via Epoxide-Driven Sol–Gel Chemistry. Advanced Materials, 2006, 18, 615-618.	21.0	52
23	Capillarity-induced folds fuel extreme shape changes in thin wicked membranes. Science, 2018, 360, 296-299.	12.6	50
24	New Insights into Pseudocapacitive Charge-Storage Mechanisms in Li-Birnessite Type MnO ₂ Monitored by Fast Quartz Crystal Microbalance Methods. Journal of Physical Chemistry C, 2014, 118, 26551-26559.	3.1	49
25	Room-Temperature Synthesis of Iron-Doped Anatase TiO ₂ for Lithium-Ion Batteries and Photocatalysis. Inorganic Chemistry, 2014, 53, 10129-10139.	4.0	49
26	Lithium Intercalation in Anatase Titanium Vacancies and the Role of Local Anionic Environment. Chemistry of Materials, 2018, 30, 3078-3089.	6.7	49
27	Thick YSZ films prepared via a modified sol–gel route: Thickness control (8–80μm). Journal of the European Ceramic Society, 2006, 26, 3153-3160.	5.7	47
28	Synthesis of YSZ powders by the sol-gel method: surfactant effects on the morphology. Solid State Sciences, 2002, 4, 1053-1059.	3.2	46
29	A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells. Journal of Power Sources, 2012, 206, 77-83.	7.8	45
30	Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis /graphite felt microbial fuel cells. Bioelectrochemistry, 2018, 120, 1-9.	4.6	44
31	Thick films of YSZ electrolytes by dip-coating process. Journal of the European Ceramic Society, 2005, 25, 2643-2646.	5.7	43
32	Shedding light on the light-driven lithium ion de-insertion reaction: towards the design of a photo-rechargeable battery. Journal of Materials Chemistry A, 2017, 5, 5927-5933.	10.3	43
33	Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin. PLoS ONE, 2019, 14, e0212787.	2.5	43
34	Composition and porosity graded La2â^'xNiO4+Î′ (x≥0) interlayers for SOFC: Control of the microstructure via a sol–gel process. Journal of Power Sources, 2006, 156, 33-38.	7.8	40
35	Design, Synthesis, Structural and Textural Characterization, and Electrical Properties of Mesoporous Thin Films Made of Rare Earth Oxide Binaries. Chemistry of Materials, 2009, 21, 2184-2192.	6.7	39
36	Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray lithography. Journal of Materials Chemistry, 2011, 21, 3597.	6.7	36

#	Article	IF	CITATIONS
37	How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?. Journal of Physical Chemistry C, 2016, 120, 24521-24532.	3.1	35
38	Optimized Sol–Gel Routes to Synthesize Yttria-Stabilized Zirconia Thin Films as Solid Electrolytes for Solid Oxide Fuel Cells. Chemistry of Materials, 2012, 24, 4540-4548.	6.7	33
39	Dye-sensitized nanostructured crystalline mesoporous tin-doped indium oxide films with tunable thickness for photoelectrochemical applications. Journal of Materials Chemistry A, 2013, 1, 8217.	10.3	33
40	Nanoporous Piezo- and Ferroelectric Thin Films. Langmuir, 2012, 28, 2944-2949.	3.5	31
41	Solarâ€Waterâ€Splitting BiVO ₄ Thinâ€Film Photoanodes Prepared By Using a Sol–Gel Dipâ€Coatiı Technique. ChemPhotoChem, 2017, 1, 273-280.	^າ ຽ.0	31
42	Determination of the Diffusion Coefficient of Protons in Nafion Thin Films by <i>ac</i> -Electrogravimetry. Langmuir, 2013, 29, 13655-13660.	3.5	30
43	Designing meso- and macropore architectures in hybrid organic–inorganic membranes by combining surfactant and breath figure templating (BFT). Physical Chemistry Chemical Physics, 2009, 11, 3733.	2.8	29
44	Nanocrystalline mesoporous LiFePO4 thin-films as cathodes for Li-ion microbatteries. Journal of Materials Chemistry A, 2014, 2, 3038.	10.3	29
45	Synthesis of La2â^'xNiO4+l´ oxides by polymeric route: non-stoichoimetry control. Ceramics International, 2004, 30, 2087-2098.	4.8	28
46	Fractal Inorganicâ^'Organic Interfaces in Hybrid Membranes for Efficient Proton Transport. Advanced Functional Materials, 2013, 23, 2872-2880.	14.9	28
47	Pechini synthesis and characterization of molybdenum carbide and nickel molybdenum carbide. Journal of Solid State Chemistry, 2008, 181, 2741-2747.	2.9	27
48	Sulfonic and Phosphonic Acid and Bifunctional Organic–Inorganic Hybrid Membranes and Their Proton Conduction Properties. Chemistry - an Asian Journal, 2011, 6, 2992-3000.	3.3	27
49	Hybrid Li Ion Conducting Membrane as Protection for the Li Anode in an Aqueous Li–Air Battery: Coupling Sol–Gel Chemistry and Electrospinning. Langmuir, 2017, 33, 9288-9297.	3.5	27
50	Silica immobilization of <i>Geobacter sulfurreducens</i> for constructing readyâ€ŧoâ€use artificial bioelectrodes. Microbial Biotechnology, 2018, 11, 39-49.	4.2	27
51	CuO photoelectrodes synthesized by the sol–gel method for water splitting. Journal of Sol-Gel Science and Technology, 2019, 89, 255-263.	2.4	27
52	Structure–Activity Relationship in Manganese Perovskite Oxide Nanocrystals from Molten Salts for Efficient Oxygen Reduction Reaction Electrocatalysis. Chemistry of Materials, 2020, 32, 4241-4247.	6.7	27
53	Elaboration and characterization of La2NiO4+δ powders and thin films via a modified sol–gel process. Journal of Solid State Chemistry, 2004, 177, 1471-1479.	2.9	25
54	Nanostructured ceria based thin films (â‰ቑ μm) As cathode/electrolyte interfaces. Journal of Solid State Chemistry, 2013, 197, 113-119.	2.9	25

#	Article	IF	CITATIONS
55	Evaluation of a sol–gel process for the synthesis of La1â^'xSrxMnO3+δ cathodic multilayers for solid oxide fuel cells. Journal of Power Sources, 2004, 133, 214-222.	7.8	24
56	Synthesis of La2NiO4+δ oxides by sol–gel process: Structural and microstructural evolution from amorphous to nanocrystallized powders. Materials Research Bulletin, 2006, 41, 1747-1753.	5.2	24
57	Assessing the Oxidation Behavior of EC:DMC Based Electrolyte on Non-Catalytically Active Surface. Journal of the Electrochemical Society, 2020, 167, 080530.	2.9	24
58	Sol–gel route to advanced nanoelectrode arrays (NEA) based on titania gold nanocomposites. Journal of Materials Chemistry, 2008, 18, 1216.	6.7	23
59	Electrospinning a versatile tool for designing hybrid proton conductive membrane. Journal of Membrane Science, 2016, 513, 12-19.	8.2	22
60	Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reaction. Nanoscale, 2020, 12, 15209-15213.	5.6	22
61	Incorporation of vanadium into the framework of hydroxyapatites: importance of the vanadium content and pH conditions during the precipitation step. Physical Chemistry Chemical Physics, 2017, 19, 9630-9640.	2.8	21
62	Surfaceâ€Driven Magnetotransport in Perovskite Nanocrystals. Advanced Materials, 2017, 29, 1604745.	21.0	21
63	Native Collagen: Electrospinning of Pure, Cross-Linker-Free, Self-Supported Membrane. ACS Applied Bio Materials, 2020, 3, 2948-2957.	4.6	21
64	Lightâ€Induced Charge Separation in Mixed Electronic/Ionic Semiconductor Driving Lithiumâ€Ion Transfer for Photoâ€Rechargeable Electrode. Advanced Sustainable Systems, 2018, 2, 1700166.	5.3	20
65	Proton transport properties in hybrid membranes investigated by ac-electrogravimetry. Electrochemistry Communications, 2010, 12, 1136-1139.	4.7	19
66	Sol–Gel Route to Zirconia–Pt-Nanoelectrode Arrays 8 nm in Radius: Their Geometrical Impact in Mass Transport. Langmuir, 2012, 28, 3650-3657.	3.5	19
67	Thin Fiber-Based Separators for High-Rate Sodium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 8369-8375.	5.1	18
68	The Role of Al ³⁺ â€Based Aqueous Electrolytes in the Charge Storage Mechanism of MnO <i>_x</i> Cathodes. Small, 2021, 17, e2101515.	10.0	18
69	Critical Current Density Limitation of LLZO Solid Electrolyte: Microstructure vs Interface. Journal of the Electrochemical Society, 2021, 168, 120550.	2.9	18
70	Gold Nanoelectrode Arrays and their Evaluation by Impedance Spectroscopy and Cyclic Voltammetry. ChemPhysChem, 2010, 11, 1971-1977.	2.1	17
71	Nickel-Doped Sodium Cobaltite 2D Nanomaterials: Synthesis and Electrocatalytic Properties. Chemistry of Materials, 2018, 30, 4986-4994.	6.7	17
72	Hydronium Ions Stabilized in a Titanate-Layered Structure with High Ionic Conductivity: Application to Aqueous Proton Batteries. Chemistry of Materials, 2020, 32, 9458-9469.	6.7	17

#	Article	IF	CITATIONS
73	Converting silicon nanoparticles into nickel iron silicide nanocrystals within molten salts for water oxidation electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 1350-1358.	10.3	17
74	New chemical process for the preparation of fine powders and thin films of LSMx-YSZ composite oxides. Solid State Sciences, 2003, 5, 1377-1383.	3.2	16
75	Lanthanum ferromanganites thin films by sol–gel process. Influence of the organic/inorganic R ratio on the microstructural properties. Solid State Sciences, 2005, 7, 159-163.	3.2	16
76	Highly ordered metal oxide nanopatterns prepared by template-assisted chemical solution deposition. Journal of Sol-Gel Science and Technology, 2008, 48, 102-112.	2.4	16
77	Electrospun carbon fibers for microbial fuel cells: A novel bioanode design applied to wastewater treatment. Electrochimica Acta, 2021, 373, 137864.	5.2	16
78	Proton Transport in Electrospun Hybrid Organic–Inorganic Membranes: An Illuminating Paradox. Advanced Functional Materials, 2016, 26, 594-604.	14.9	14
79	Activation of Câ^'H Bond of Propane by Strong Basic Sites Generated by Bulk Proton Conduction on Vâ€Modified Hydroxyapatites for the Formation of Propene ChemCatChem, 2020, 12, 2506-2521.	3.7	14
80	Probing Properties, Stability, and Performances of Hierarchical Mesoporous Materials with Nanoscale Interfaces. Journal of Physical Chemistry C, 2012, 116, 7658-7663.	3.1	13
81	Silica–carbon hydrogels as cytocompatible bioelectrodes. Journal of Materials Chemistry B, 2013, 1, 606-609.	5.8	13
82	A one-pot route to prepare class II hybrid ionogel electrolytes. New Journal of Chemistry, 2014, 38, 2008-2015.	2.8	13
83	Understanding crystallization processes of NiO/Ce0.9Gd0.1O2â~î^ sol–gel processed thin films for the design of efficient electrodes: an in situ thermal ellipsometry analysis. Journal of Materials Chemistry, 2012, 22, 9368.	6.7	12
84	DWCNT-Doped Silica Gel Exhibiting Both Ionic and Electronic Conductivities. Journal of Physical Chemistry C, 2012, 116, 11306-11314.	3.1	12
85	Flexible Electroactive Nanomaterials Biotemplated with Versatile M13 Phage Platforms. Advanced Engineering Materials, 2013, 15, 954-961.	3.5	12
86	Characterization of LiCoO ₂ nanoparticle suspensions by single collision events. Physical Chemistry Chemical Physics, 2019, 21, 5416-5423.	2.8	12
87	Towards a high MnO ₂ loading and gravimetric capacity from proton-coupled Mn ⁴⁺ /Mn ²⁺ reactions using a 3D free-standing conducting scaffold. Journal of Materials Chemistry A, 2021, 9, 1500-1506.	10.3	12
88	Proton Insertion Properties in a Hybrid Membrane/Conducting Polymer Bilayer Investigated by AC Electrogravimetry. Journal of the Electrochemical Society, 2010, 157, F69.	2.9	11
89	Nanocrystalline, mesoporous NiO/Ce0.9Gd0.1O2â^î [^] thin films with tuned microstructures and electrical properties: in situ characterization of electrical responses during the reduction of NiO. Journal of Materials Chemistry A, 2013, 1, 10753.	10.3	11
90	Search for Li-electrochemical activity and Li-ion conductivity among lithium bismuth oxides. Solid State Ionics, 2015, 283, 68-74.	2.7	11

#	Article	IF	CITATIONS
91	Engineering n–p junction for photo-electrochemical hydrogen production. Physical Chemistry Chemical Physics, 2017, 19, 30675-30682.	2.8	11
92	Mass Transport Properties of Silicified Graphite Felt Electrodes. Journal of Physical Chemistry C, 2013, 117, 15918-15923.	3.1	9
93	Experimental Descriptors for the Synthesis of Multicationic Nickel Perovskite Nanoparticles for Oxygen Reduction. ACS Applied Nano Materials, 2020, 3, 7482-7489.	5.0	9
94	A novel microbial fuel cell electrode design: prototyping a self-standing one-step bacteria-encapsulating bioanode with electrospinning. Journal of Materials Chemistry B, 2021, 9, 4309-4318.	5.8	9
95	Sulfonic Acid Functionalized Chitosan as a Sustainable Component for Proton Conductivity Management in PEMs. ChemistrySelect, 2017, 2, 2503-2511.	1.5	8
96	Versatile Molten Salt Synthesis of Manganite Perovskite Oxide Nanocrystals and Their Magnetic Properties. ChemNanoMat, 2019, 5, 358-363.	2.8	8
97	Synthesis of poly(phenylene oxide)-based fluoro-tin-oxide/ZrO2 nanoelectrode arrays by hybrid organic/inorganic approach. Electrochimica Acta, 2011, 56, 7155-7162.	5.2	7
98	Reduction of NiO to Ni in Nanocrystalline Composite NiO/Ce _{0.9} Gd _{0.1} O _{2-Î′} Porous Thin Films: Microstructure Evolution Through in Situ Impedance Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 16297-16305.	3.1	7
99	Scrutiny of the LiCoO ₂ Composite Electrode/Electrolyte Interface by Advanced Electrogravimetry and Implications for Aqueous Li-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 3859-3867.	3.1	7
100	Pt ZrO2 nanoelectrode array synthesized through the sol–gel process: evaluation of their sensing capability. Journal of Solid State Electrochemistry, 2013, 17, 1099-1107.	2.5	6
101	Evaluation of Hydrophilized Graphite Felt for Electrochemical Heavy Metals Detection (Pb ²⁺ , Hg ²⁺). International Journal of Electrochemistry, 2015, 2015, 1-7.	2.4	6
102	Red-Shifted Absorptions of Cation-Defective and Surface-Functionalized Anatase with Enhanced Photoelectrochemical Properties. ACS Omega, 2019, 4, 10929-10938.	3.5	6
103	Multicationic Sr4Mn3O10 mesostructures: molten salt synthesis, analytical electron microscopy study and reactivity. Materials Horizons, 2018, 5, 480-485.	12.2	5
104	Harvesting light with semiconductor: Role of interface in the processes of charge transfer. Materials Science in Semiconductor Processing, 2018, 73, 2-12.	4.0	5
105	Proton Diffusion Coefficient in Electrospun Hybrid Membranes by Electrochemical Impedance Spectroscopy. Langmuir, 2015, 31, 9737-9741.	3.5	4
106	Interplay between Electrical Relaxation and Structural Properties in Hybrid Membrane Based on PVDF–HFP and Functionalized Silica Network. Journal of Physical Chemistry C, 2016, 120, 6963-6970.	3.1	4
107	Electron Transfer at the Metal Oxide/Electrolyte Interface: A Simple Methodology for Quantitative Kinetics Evaluation. Journal of Physical Chemistry C, 2018, 122, 12761-12770.	3.1	4
108	Synthesis, characterization and electrical properties of La0.7Sr0.3Co0.2Fe0.8O3/Gd–CeO2 thin films (â‰ 9 00 nm). Journal of Materials Chemistry A, 2014, 2, 6448.	10.3	3

#	Article	IF	CITATIONS
109	Discussion on a Percolating Conducting Network of a Composite Thin-Film Electrode (â‰顰 μm) for Micro-Solid Oxide Fuel Cell Application. Langmuir, 2014, 30, 8889-8897.	3.5	3
110	Synergistic Effect Between Ca 4 V 4 O 14 and Vanadium‣ubstituted Hydroxyapatite in the Oxidative Dehydrogenation of Propane. ChemCatChem, 2021, 13, 3995-4009.	3.7	3
111	Hydroxyapatites as Versatile Inorganic Hosts of Unusual Pentavalent Manganese Cations. Chemistry of Materials, 2020, 32, 10584-10593.	6.7	2
112	A first-principles computational comparison of defect-free and disordered, fluorinated anatase TiO2 (001) interfaces with water. RSC Advances, 2020, 10, 8982-8988.	3.6	2
113	Regeneration of Electrocatalyst through Li-Ion Insertion. Journal of the Electrochemical Society, 2022, 169, 030522.	2.9	2
114	Microstructural characterisation by X-ray scattering of perovskite-type La0.8Sr0.2MnO3±δ thin films prepared by a dip-coating process. Journal of Materials Science, 2007, 42, 4581-4590.	3.7	1
115	Sol-Gel Process to Prepare an Anode Supported YSZ Electrolyte. ECS Transactions, 2009, 25, 1651-1657.	0.5	1
116	Hybrid Electrolytes. ACS Symposium Series, 2015, , 73-97.	0.5	1
117	Investigating Charge Transfer in Functionalized Mesoporous EISA–SnO ₂ Films. Journal of Physical Chemistry C, 2017, 121, 23207-23217.	3.1	1
118	Interface evolution and performance degradation in LiCoO2 composite battery electrodes monitoredÂby advanced EQCM. Electrochimica Acta, 2022, 413, 140171.	5.2	1
119	Design and Development of High-Performance Hybrid Inorganic-Organic Fuel Cell Membranes. ECS Transactions, 2009, 25, 1091-1099.	0.5	Ο
120	Functionalized Hybrid Organic-Inorganic Membranes Investigated by ac-Electrogravimetry. ECS Transactions, 2009, 25, 1115-1123.	0.5	0
121	Electropolymerization of Phenol on FTO Modified ZrO2 Nanoelectrode Arrays: Morphology and Electrochemical Properties. ECS Meeting Abstracts, 2010, , .	0.0	0