Sandeep Kumar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8727093/sandeep-kumar-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24 1,719 20 25 g-index

25 1,807 5.9 4.52 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
24	Green-monodispersed Pd-nanoparticles for improved mitigation of pathogens and environmental pollutant. <i>Materials Today Communications</i> , 2022 , 30, 103106	2.5	1
23	Incorporation of liquid crystalline triphenylene derivative in bulk heterojunction solar cell with molybdenum oxide as buffer layer for improved efficiency. <i>Liquid Crystals</i> , 2016 , 43, 928-936	2.3	21
22	Bulk heterojunction solar cells based on self-assembling disc-shaped liquid crystalline material. <i>Liquid Crystals</i> , 2015 , 1-9	2.3	6
21	Microfluidic Synthesis of Polymer and Inorganic Particulate Materials. <i>Annual Review of Materials Research</i> , 2010 , 40, 415-443	12.8	180
20	Self-assembly of colloidal quantum dots on the scaffold of triblock copolymer micelles. <i>ACS Applied Materials & M</i>	9.5	23
19	Sphere-to-Wormlike Network Transition of Block Copolymer Micelles Containing CdSe Quantum Dots in the Corona. <i>Macromolecules</i> , 2010 , 43, 5066-5074	5.5	55
18	Structure and Excited-State Interactions in Composites of CdSe Nanorods and Interface-Compatible Polythiophene-graft-poly(N,N-dimethylaminoethyl methacrylates). <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 393-403	2.6	6
17	Preparative size-exclusion chromatography for purification and characterization of colloidal quantum dots bound by chromophore-labeled polymers and low-molecular-weight chromophores. <i>Journal of Chromatography A</i> , 2009 , 1216, 5011-9	4.5	23
16	Exciton Trapping and Recombination in Type II CdSe/CdTe Nanorod Heterostructures. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 5423-5431	3.8	75
15	Nanoscale co-organization of quantum dots and conjugated polymers using polymeric micelles as templates. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9481-91	16.4	54
14	Colloidal nanocrystal solar cells. <i>Mikrochimica Acta</i> , 2008 , 160, 315-325	5.8	71
13	IVII Nanocrystalpolymer solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 195, 39-46	4.7	49
12	Loading quantum dots into thermo-responsive microgels by reversible transfer from organic solvents to water. <i>Journal of Materials Chemistry</i> , 2008 , 18, 763		50
11	Energetics of Photoinduced Electron-Transfer Reactions Decided by Quantum Confinement. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13777-13785	3.8	63
10	Hybrid solar cells using PbS nanoparticles. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 420-423	6.4	171
9	Nanorod heterostructures showing photoinduced charge separation. <i>Small</i> , 2007 , 3, 1633-9	11	180
8	Synthesis and electrochemical properties of InP nanocrystals. <i>Journal of Materials Research</i> , 2006 , 21, 543-546	2.5	9

LIST OF PUBLICATIONS

7	Nanocrystal shape and the mechanism of exciton spin relaxation. <i>Nano Letters</i> , 2006 , 6, 1765-71	11.5	43
6	Shape control of II-VI semiconductor nanomaterials. <i>Small</i> , 2006 , 2, 316-29	11	335
5	Mechanism and origin of exciton spin relaxation in CdSe nanorods. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 25371-82	3.4	31
4	Synthesis and structural metastability of CdTe nanowires. <i>Chemistry - A European Journal</i> , 2005 , 11, 222	20 ₄ 48	32
3	First solar cells based on CdTe nanoparticle/MEH-PPV composites. <i>Journal of Materials Research</i> , 2004 , 19, 1990-1994	2.5	81
2	Preparation and characterization of poly(methyl methacrylate) lay nanocomposites via melt intercalation: The effect of organoclay on the structure and thermal properties. <i>Journal of Applied Polymer Science</i> , 2003 , 89, 1186-1194	2.9	119
1	Hexagonal CdTe nanoparticles of various morphologies. <i>Chemical Communications</i> , 2003 , 2478-9	5.8	41