
Yusuke Toyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8727076/publications.pdf Version: 2024-02-01

YUSUKE TOYAMA

#	Article	IF	CITATIONS
1	Adhesion-mediated heterogeneous actin organization governs apoptotic cell extrusion. Nature Communications, 2021, 12, 397.	5.8	34
2	Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers. Nature Materials, 2021, 20, 1156-1166.	13.3	69
3	Hyaluronanâ€Mediated Motility Receptor Governs Chromosome Segregation by Regulating Microtubules Sliding Within the Bridging Fiber. Advanced Biology, 2021, 5, 2000493.	1.4	1
4	Interplay between caspase, Yes-associated protein, and mechanics: A possible switch between life and death?. Current Opinion in Cell Biology, 2020, 67, 141-146.	2.6	8
5	Desmosomal Junctions Govern Tissue Integrity and Actomyosin Contractility in Apoptotic Cell Extrusion. Current Biology, 2020, 30, 682-690.e5.	1.8	33
6	wERKing the Waves in Collective Cell Migration. Developmental Cell, 2020, 53, 621-622.	3.1	1
7	Calcium Wave Promotes Cell Extrusion. Current Biology, 2020, 30, 670-681.e6.	1.8	66
8	Large-scale curvature sensing by directional actin flow drives cellular migration mode switching. Nature Physics, 2019, 15, 393-402.	6.5	78
9	Aurora-A Breaks Symmetry in Contractile Actomyosin Networks Independently of Its Role in Centrosome Maturation. Developmental Cell, 2019, 48, 631-645.e6.	3.1	44
10	Shaping the zebrafish myotome by intertissue friction and active stress. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25430-25439.	3.3	53
11	Syncytial germline architecture is actively maintained by contraction of an internal actomyosin corset. Nature Communications, 2018, 9, 4694.	5.8	29
12	Three-dimensional forces beyond actomyosin contraction: lessons from fly epithelial deformation. Current Opinion in Genetics and Development, 2018, 51, 96-102.	1.5	7
13	Remodeling of adhesion and modulation of mechanical tensile forces during apoptosis in <i>Drosophila</i> epithelium. Development (Cambridge), 2017, 144, 95-105.	1.2	40
14	Topological defects in epithelia govern cell death and extrusion. Nature, 2017, 544, 212-216.	13.7	511
15	Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis. Journal of Cell Biology, 2017, 216, 1371-1386.	2.3	99
16	Basolateral protrusion and apical contraction cooperatively drive Drosophila germ-band extension. Nature Cell Biology, 2017, 19, 375-383.	4.6	121
17	Nanoscale architecture of cadherin-based cellÂadhesions. Nature Cell Biology, 2017, 19, 28-37.	4.6	135
18	DNA damage causes rapid accumulation of phosphoinositides for ATRÂsignaling. Nature Communications, 2017, 8, 2118.	5.8	66

Yusuke Toyama

#	Article	IF	CITATIONS
19	Cell Boundary Elongation by Non-autonomous Contractility in Cell Oscillation. Current Biology, 2016, 26, 2388-2396.	1.8	64
20	Epithelial Cell Packing Induces Distinct Modes of Cell Extrusions. Current Biology, 2016, 26, 2942-2950.	1.8	98
21	Mechanics of epithelial closure over non-adherent environments. Nature Communications, 2015, 6, 6111.	5.8	113
22	Gap geometry dictates epithelial closure efficiency. Nature Communications, 2015, 6, 7683.	5.8	118
23	Epithelial bridges maintain tissue integrity during collective cell migration. Nature Materials, 2014, 13, 87-96.	13.3	162
24	Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana. ELife, 2014, 3, .	2.8	86
25	Cell Ingression and Apical Shape Oscillations during Dorsal Closure in Drosophila. Biophysical Journal, 2012, 102, 969-979.	0.2	67
26	Apoptotic force: Active mechanical function of cell death during morphogenesis. Development Growth and Differentiation, 2011, 53, 269-276.	0.6	36
27	<i>Drosophila</i> morphogenesis: Tissue force laws and the modeling of dorsal closure. HFSP Journal, 2009, 3, 441-460.	2.5	28
28	Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma. Physics of Plasmas, 2008, 15, 022701.	0.7	38
29	Apoptotic Force and Tissue Dynamics During <i>Drosophila</i> Embryogenesis. Science, 2008, 321, 1683-1686.	6.0	251
30	Emergent properties during dorsal closure in <i>Drosophila</i> morphogenesis. Physical Biology, 2008, 5, 015004.	0.8	30
31	Actomyosin purse strings: Renewable resources that make morphogenesis robust and resilient. HFSP Journal, 2008, 2, 220-237.	2.5	65
32	Laser generated proton beam focusing and high temperature isochoric heating of solid matter. Physics of Plasmas, 2007, 14, .	0.7	67
33	Upregulation of Forces and Morphogenic Asymmetries in Dorsal Closure during Drosophila Development. Biophysical Journal, 2007, 92, 2583-2596.	0.2	86
34	Development of multichannel wave-coincidence neutron spectrometer for fast ignition experiments. Review of Scientific Instruments, 2006, 77, 10E727.	0.6	3
35	Ti Kα radiography of Cu-doped plastic microshell implosions via spherically bent crystal imaging. Applied Physics Letters, 2005, 86, 191501.	1.5	27
36	Broad-range neutron spectra identification in ultraintense laser interactions with carbon-deuterated plasma. Physics of Plasmas, 2005, 12, 110703.	0.7	29

Yusuke Toyama

#	Article	IF	CITATIONS
37	Enhancement of energetic electrons and protons by cone guiding of laser light. Physical Review E, 2005, 71, 036403.	0.8	45
38	Characterization of 7Li(p,n)7Be neutron yields from laser produced ion beams for fast neutron radiography. Physics of Plasmas, 2004, 11, 3404-3408.	0.7	97
39	Ion acceleration from the shock front induced by hole boring in ultraintense laser-plasma interactions. Physical Review E, 2004, 70, 046414.	0.8	60
40	Integrated implosion/heating studies for advanced fast ignition. Physics of Plasmas, 2004, 11, 2746-2753.	0.7	50
41	Progress and perspectives of fast ignition. Plasma Physics and Controlled Fusion, 2004, 46, B41-B49.	0.9	18
42	Plasma devices to guide and collimate a high density of MeV electrons. Nature, 2004, 432, 1005-1008.	13.7	170
43	Laser light and hot electron micro focusing using a conical target. Physics of Plasmas, 2004, 11, 3083-3087.	0.7	184
44	Fast plasma heating in a cone-attached geometry—towards fusion ignition. Nuclear Fusion, 2004, 44, S276-S283.	1.6	36
45	Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography. Applied Physics Letters, 2002, 80, 2129-2131.	1.5	124
46	Fast heating of super-solid density plasmas towards laser fusion ignition. Plasma Physics and Controlled Fusion, 2002, 44, B109-B119.	0.9	14
47	Progress of fast ignitor studies and Petawatt laser construction at Osaka University. Physics of Plasmas, 2002, 9, 2202-2207.	0.7	54
48	Fast heating scalable to laser fusion ignition. Nature, 2002, 418, 933-934.	13.7	445
49	Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature, 2001, 412, 798-802.	13.7	873
50	Prepulse Effect for Recombining Plasma Produced by Ultrashort High-Intensity Lasers. Japanese Journal of Applied Physics, 2001, 40, 1443-1447.	0.8	1
51	Fast ignitor research at the Institute of Laser Engineering, Osaka University. Physics of Plasmas, 2001, 8, 2268-2274.	0.7	72
52	Studies of ultra-intense laser plasma interactions for fast ignition. Physics of Plasmas, 2000, 7, 2014-2022.	0.7	115
53	Experimental characterization of short-wavelength Ni-like soft-x-ray lasing toward the water window. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 2295.	0.9	19