Fernando Julian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8727058/publications.pdf

Version: 2024-02-01

		623188	610482
35	598	14	24
papers	citations	h-index	g-index
26	26	26	407
36	36	36	487
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Micromechanics of hemp strands in polypropylene composites. Composites Science and Technology, 2012, 72, 1209-1213.	3.8	75
2	Estimation of the interfacial shears strength, orientation factor and mean equivalent intrinsic tensile strength in old newspaper fiber/polypropylene composites. Composites Part B: Engineering, 2013, 50, 232-238.	5.9	66
3	Composites from poly(lactic acid) and bleached chemical fibres: Thermal properties. Composites Part B: Engineering, 2018, 134, 169-176.	5.9	57
4	Analysis of tensile and flexural modulus in hemp strands/polypropylene composites. Composites Part B: Engineering, 2013, 47, 339-343.	5.9	52
5	Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: Car door handle case study. Journal of Cleaner Production, 2019, 226, 64-73.	4.6	52
6	Bio composite from bleached pine fibers reinforced polylactic acid as a replacement of glass fiber reinforced polypropylene, macro and micro-mechanics of the Young's modulus. Composites Part B: Engineering, 2017, 125, 203-210.	5.9	50
7	Flexural properties of fully biodegradable alpha-grass fibers reinforced starch-based thermoplastics. Composites Part B: Engineering, 2015, 81, 98-106.	5.9	41
8	Tensile Properties of Polypropylene Composites Reinforced with Mechanical, Thermomechanical, and Chemi-Thermomechanical Pulps from Orange Pruning. BioResources, 2015, 10, .	0.5	27
9	Explorative Study on the Use of CurauÃ; Reinforced Polypropylene Composites for the Automotive Industry. Materials, 2019, 12, 4185.	1.3	18
10	Extending the value chain of corn agriculture by evaluating technical feasibility and the quality of the interphase of chemo-thermomechanical fiber from corn stover reinforced polypropylene biocomposites. Composites Part B: Engineering, 2018, 137, 16-22.	5.9	17
11	Impact Properties and Water Uptake Behavior of Old Newspaper Recycled Fibers-Reinforced Polypropylene Composites. Materials, 2020, 13, 1079.	1.3	17
12	BIO-BASED COMPOSITES FROM STONE GROUNDWOOD APPLIED TO NEW PRODUCT DEVELOPMENT. BioResources, 2012, 7, .	0.5	17
13	Nanocomposites Materials of PLA Reinforced with Nanoclays Using a Masterbatch Technology: A Study of the Mechanical Performance and Its Sustainability. Polymers, 2021, 13, 2133.	2.0	16
14	Nanoclay Effect into the Biodegradation and Processability of Poly(lactic acid) Nanocomposites for Food Packaging. Polymers, 2021, 13, 2741.	2.0	16
15	Feasibility of Barley Straw Fibers as Reinforcement in Fully Biobased Polyethylene Composites: Macro and Micro Mechanics of the Flexural Strength. Molecules, 2020, 25, 2242.	1.7	15
16	High Stiffness Performance Alpha-Grass Pulp Fiber Reinforced Thermoplastic Starch-Based Fully Biodegradable Composites. BioResources, 2013, 9, .	0.5	13
17	Flexural Properties and Mean Intrinsic Flexural Strength of Old Newspaper Reinforced Polypropylene Composites. Polymers, 2019, 11, 1244.	2.0	12
18	RESEARCH ON THE SUITABILITY OF ORGANOSOLV SEMI-CHEMICAL TRITICALE FIBERS AS REINFORCEMENT FOR RECYCLED HDPE COMPOSITES. BioResources, 2012, 7, .	0.5	8

#	Article	IF	Citations
19	Design and Development of Fully Biodegradable Products from Starch Biopolymer and Corn Stalk Fibres. Journal of Biobased Materials and Bioenergy, 2012, 6, 410-417.	0.1	7
20	Biocomposites from Starch-based Biopolymer and Rape Fibers. Part II: Stiffening, Flexural and Impact Strength, and Product Development. Current Organic Chemistry, 2013, 17, 1641-1646.	0.9	5
21	Topography of the Interfacial Shear Strength and the Mean Intrinsic Tensile Strength of Hemp Fibers as a Reinforcement of Polypropylene. Materials, 2020, 13, 1012.	1.3	4
22	Tensi \tilde{A}^3 n Creativa aplicada al An \tilde{A}_i lisis de Competencias a Alumnos de Ingenier \tilde{A} a. Formacion Universitaria, 2010, 3, .	0.2	3
23	Technical and Environmental Viability of a Road Bicycle Pedal Part Made of a Fully Bio-Based Composite Material. Materials, 2021, 14, 1399.	1.3	3
24	Elements that define the social responsibility of a product. DYNA (Colombia), 2014, 81, 175.	0.2	2
25	Experimental Behavior of Thin-Tile Masonry under Uniaxial Compression. Multi-Leaf Case Study. Materials, 2021, 14, 2785.	1.3	2
26	Biobased polyamide reinforced with natural fiber composites. , 2021, , 141-165.		2
27	GAMIFICATION AS A METHODOLOGY TO INCENTIVE STUDENTS. , 2018, , .		1
28	Stiffness of Rapeseed Sawdust Polypropylene Composite and Its Suitability as a Building Material. BioResources, 2018, 13, .	0.5	0
29	AGRI-FOOD TRANSBORDER COMPETENCES ON THE DEGREE PROGRAMS IN THE FRAMEWORK OF TRANSVERSALIS., 2021, , .		0
30	INTRODUCING SUSTAINABILITY TO ENGINEERING STUDIES. EXPERIENCES BASED ON GREEN PACKAGING. , 2021, , .		0
31	SUSTAINABILITY EDUCATION VIA ENGAGING EXPERIENCES BASED ON THE DEVELOPMENT OF CELLULOSE NANOFIBERS. , 2021, , .		0
32	MEJORA DE LA ENSEÃ'ANZA Y EL APRENDIZAJE A TRAVÉS DE LA EVALUACIÓN DE COMPETENCIAS POR MEDIO DE LA HERRAMIENTA CYCLOID. Formacion Universitaria, 2014, 7, 17-26.	0.2	0
33	CREATIVE TECHNIQUES APPLIED TO ENGINEERING SUBJECTS. , 2020, , .		O
34	CROSS-BORDER DOCTORAL TRAINING AND TRANSVERSAL COMPETENCES: AMONG ACADEMIA AND IN THE WORKPLACE. , 2021, , .		0
35	AN INTERNATIONAL COLLABORATION IN A DESIGN POSTGRADUATE. EDULEARN Proceedings, 2022, , .	0.0	0