Jan W Arntzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8726843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Next-generation phylogeography of the banded newts (Ommatotriton): A phylogenetic hypothesis for three ancient species with geographically restricted interspecific gene flow and deep intraspecific genetic structure. Molecular Phylogenetics and Evolution, 2022, 167, 107361.	2.7	7
2	Variation in vertebrae shape across smallâ€bodied newts reveals functional and developmental constraints acting upon the trunk region. Journal of Anatomy, 2022, 240, 639-646.	1.5	2
3	Genetic traces of hybrid zone movement across a fragmented habitat. Journal of Evolutionary Biology, 2022, 35, 400-412.	1.7	3
4	Coexistence of two newt species in a transition zone of range overlap. Contributions To Zoology, 2022, 91, 133-151.	0.5	2
5	Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Science, 2022, 376, 1459-1466.	12.6	34
6	Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Molecular Phylogenetics and Evolution, 2021, 155, 106967.	2.7	22
7	A genomic footprint of a moving hybrid zone in marbled newts. Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 459-465.	1.4	9
8	Reconstructing hotspots of genetic diversity from glacial refugia and subsequent dispersal in Italian common toads (Bufo bufo). Scientific Reports, 2021, 11, 260.	3.3	12
9	Genetic and morphological data demonstrate hybridization and backcrossing in a pair of salamanders at the far end of the speciation continuum. Evolutionary Applications, 2021, 14, 2784-2793.	3.1	6
10	Tracing species replacement in Iberian marbled newts. Ecology and Evolution, 2021, 11, 402-414.	1.9	6
11	Testing the hybrid superiority hypothesis in crested and marbled newts. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 275-283.	1.4	8
12	Extensive cytonuclear discordance in a crested newt from the Balkan Peninsula glacial refugium. Biological Journal of the Linnean Society, 2020, 130, 578-585.	1.6	18
13	Environmental correlates of the European common toad hybrid zone. Contributions To Zoology, 2020, 89, 270-281.	0.5	7
14	Morphological integration and serial homology: A case study of the cranium and anterior vertebrae in salamanders. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 1206-1219.	1.4	3
15	â€~Mainland-island' population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation. Scientific Reports, 2020, 10, 1700.	3.3	6
16	Genetic and Morphological Differentiation of Common Toads in the Alps and the Apennines. , 2020, , 1-13.		3
17	Phylogeography of a cryptic speciation continuum in Eurasian spadefoot toads (<i>Pelobates</i>). Molecular Ecology, 2019, 28, 3257-3270.	3.9	50
18	Differential introgression across newt hybrid zones: Evidence from replicated transects. Molecular Ecology, 2019, 28, 4811-4824.	3.9	28

#	Article	IF	CITATIONS
19	An amphibian species pushed out of Britain by a moving hybrid zone. Molecular Ecology, 2019, 28, 5145-5154.	3.9	14
20	Testing an hypothesis of hybrid zone movement for toads in France. Molecular Ecology, 2019, 28, 1070-1083.	3.9	31
21	A common toad hybrid zone that runs fromÂtheÂAtlanticÂtoÂtheÂMediterranean. Amphibia - Reptilia, 2018, 39, 41-50.	0.5	18
22	Evolution of skull shape in the family Salamandridae (Amphibia: Caudata). Journal of Anatomy, 2018, 232, 359-370.	1.5	10
23	Molecular data reveal the hybrid nature of an introduced population of banded newts (Ommatotriton) in Spain. Conservation Genetics, 2018, 19, 249-254.	1.5	10
24	Morphological and molecular characters to describe a marbled newt hybrid zone in the Iberian peninsula. Contributions To Zoology, 2018, 87, 167-185.	0.5	8
25	Absence of heterosis in hybrid crested newts. PeerJ, 2018, 6, e5317.	2.0	17
26	Stabilization of a salamander moving hybrid zone. Ecology and Evolution, 2017, 7, 689-696.	1.9	19
27	Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38Âyear period. Biodiversity and Conservation, 2017, 26, 1411-1430.	2.6	82
28	A genomic footprint of hybrid zone movement in crested newts. Evolution Letters, 2017, 1, 93-101.	3.3	77
29	The Near East as a cradle of biodiversity: A phylogeography of banded newts (genus Ommatotriton) reveals extensive inter- and intraspecific genetic differentiation. Molecular Phylogenetics and Evolution, 2017, 114, 73-81.	2.7	37
30	Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Molecular Ecology, 2017, 26, 5663-5675.	3.9	41
31	Morphological and molecular data to describe a hybrid population of the Common toad (Bufo bufo) and the Spined toad (Bufo spinosus) in western France. Contributions To Zoology, 2017, 86, 1-9.	0.5	11
32	Paul Kammerer and the inheritance of acquired characteristics. Contributions To Zoology, 2016, 85, 457-470.	0.5	9
33	Vertebral shape and body elongation in Triturus newts. Zoology, 2016, 119, 439-446.	1.2	7
34	Phylogeographic analysis reveals northerly refugia for the riverine amphibian <i>Triturus dobrogicus</i> (Caudata: Salamandridae). Biological Journal of the Linnean Society, 2016, 119, 974-991.	1.6	30
35	Concordant morphological and molecular clines in a contact zone of the Common and Spined toad (Bufo bufo and B. spinosus) in the northwest of France. Frontiers in Zoology, 2016, 13, 52.	2.0	20
36	Drastic Population Size Change in Two Populations of the Golden-Striped Salamander over a Forty-Year Period—Are Eucalypt Plantations to Blame?. Diversity, 2015, 7, 270-294.	1.7	1

#	Article	IF	CITATIONS
37	Vertebral number is highly evolvable in salamanders and newts (family Salamandridae) and variably associated with climatic parameters. Contributions To Zoology, 2015, 84, 85-113.	0.5	40
38	Genetic pollution of a threatened native crested newt species through hybridization with an invasive congener in the Netherlands. Biological Conservation, 2015, 184, 145-153.	4.1	35
39	The crested newt <i>Triturus cristatus</i> recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biological Journal of the Linnean Society, 2015, 114, 574-587.	1.6	36
40	Homeotic transformations and number changes in the vertebral column of <i>Triturus</i> newts. PeerJ, 2015, 3, e1397.	2.0	15
41	Exploring the Effect of Asymmetric Mitochondrial DNA Introgression on Estimating Niche Divergence in Morphologically Cryptic Species. PLoS ONE, 2014, 9, e95504.	2.5	13
42	The distribution of the crested and marbled newt species (Amphibia: Salamandridae: Triturus)– an addition to the New Atlas of Amphibians and Reptiles of Europe. Amphibia - Reptilia, 2014, 35, 376-381.	0.5	31
43	The modality of nine <i>Triturus</i> newt hybrid zones assessed with nuclear, mitochondrial and morphological data. Biological Journal of the Linnean Society, 2014, 113, 604-622.	1.6	57
44	Parallel tagged amplicon sequencing of transcriptomeâ€based genetic markers for <i>Triturus</i> newts with the Ion Torrent nextâ€generation sequencing platform. Molecular Ecology Resources, 2014, 14, 1080-1089.	4.8	45
45	Evolutionary history of Ichthyosaura alpestris (Caudata, Salamandridae) inferred from the combined analysis of nuclear and mitochondrial markers. Molecular Phylogenetics and Evolution, 2014, 81, 207-220.	2.7	34
46	Evolution of skull and body shape inTriturusnewts reconstructed from three-dimensional morphometric data and phylogeny. Biological Journal of the Linnean Society, 2014, 113, 243-255.	1.6	19
47	Data Concatenation, Bayesian Concordance and Coalescent-Based Analyses of the Species Tree for the Rapid Radiation of Triturus Newts. PLoS ONE, 2014, 9, e111011.	2.5	18
48	Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling. Frontiers in Zoology, 2013, 10, 13.	2.0	89
49	How complex is the Bufo bufo species group?. Molecular Phylogenetics and Evolution, 2013, 69, 1203-1208.	2.7	36
50	Conservation Genetic Resources for Effective Species Survival (ConGRESS): Bridging the divide between conservation research and practice. Journal for Nature Conservation, 2013, 21, 433-437.	1.8	32
51	The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20651-20656.	7.1	412
52	Hybridization and speciation. Journal of Evolutionary Biology, 2013, 26, 229-246.	1.7	1,735
53	Is mitochondrial DNA divergence of Near Eastern crested newts (Triturus karelinii group) reflected by differentiation of skull shape?. Zoologischer Anzeiger, 2013, 252, 269-277.	0.9	9
54	A multimarker phylogeography of crested newts (Triturus cristatus superspecies) reveals cryptic species. Molecular Phylogenetics and Evolution, 2013, 67, 167-175.	2.7	40

#	Article	IF	CITATIONS
55	Bringing genetic diversity to the forefront of conservation policy and management. Conservation Genetics Resources, 2013, 5, 593-598.	0.8	145
56	A revised taxonomy of crested newts in the <i>Triturus karelinii</i> group (Amphibia:) Tj ETQq0 0 0 r	gBT /Overl	ock $_{32}^{10}$ Tf 50 7
57	Skull shape differentiation of black and white olms (Proteus anguinus anguinus and Proteus a.) Tj ETQq1 1 0.78	84314 rgB ⁻ 0.5	Г /Overlock 10 22
58	Morphological and genetic differentiation of Bufo toads: two cryptic species in Western Europe (Anura, Bufonidae). Contributions To Zoology, 2013, 82, 147-169.	0.5	23
59	Multilocus species tree analyses resolve the radiation of the widespread Bufo bufo species group (Anura, Bufonidae). Molecular Phylogenetics and Evolution, 2012, 62, 71-86.	2.7	84
60	Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models. BMC Evolutionary Biology, 2012, 12, 161.	3.2	44
61	Corresponding Mitochondrial DNA and Niche Divergence for Crested Newt Candidate Species. PLoS ONE, 2012, 7, e46671.	2.5	27
62	Amphibian pond loss as a function of landscape change – A case study over three decades in an agricultural area of northern France. Biological Conservation, 2011, 144, 1610-1618.	4.1	70
63	Crest evolution in newts: implications for reconstruction methods, sexual selection, phenotypic plasticity and the origin of novelties. Journal of Evolutionary Biology, 2011, 24, 2073-2086.	1.7	26
64	Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evolutionary Biology, 2011, 11, 162.	3.2	70
65	Cryptic crested newt diversity at the Eurasian transition: The mitochondrial DNA phylogeography of Near Eastern Triturus newts. Molecular Phylogenetics and Evolution, 2010, 56, 888-896.	2.7	67
66	Fluctuating asymmetry is a function of population isolation in island lizards. Journal of Zoology, 2010, 282, 266-275.	1.7	23
67	DOLLO'S LAW AND THE IRREVERSIBILITY OF DIGIT LOSS IN BACHIA. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	47
68	Using connectivity metrics and niche modelling to explore the occurrence of the northern crested newt <i>Triturus cristatus</i> (Amphibia, Caudata) in a traditionally managed landscape. Environmental Conservation, 2010, 37, 195-200.	1.3	31
69	Amphibian distribution in a traditionally managed rural landscape of Eastern Europe: Probing the effect of landscape composition. Biological Conservation, 2010, 143, 1118-1124.	4.1	94
70	Identifying future research needs in landscape genetics: where to from here?. Landscape Ecology, 2009, 24, 455-463.	4.2	167
71	Longâ€ŧerm survival of a urodele amphibian despite depleted major histocompatibility complex variation. Molecular Ecology, 2009, 18, 769-781.	3.9	58
72	ASYMMETRIC VIABILITY OF RECIPROCAL-CROSS HYBRIDS BETWEEN CRESTED AND MARBLED NEWTS (<i>TRITURUS CRISTATUS</i> AND <i>T. MARMORATUS</i>). Evolution; International Journal of Organic Evolution, 2009, 63, 1191-1202.	2.3	75

#	Article	IF	CITATIONS
73	Multiple nuclear and mitochondrial genes resolve the branching order of a rapid radiation of crested newts (Triturus, Salamandridae). Molecular Phylogenetics and Evolution, 2009, 52, 321-328.	2.7	38
74	Environmental parameters that determine species geographical range limits as a matter of time and space. Journal of Biogeography, 2008, 35, 1177-1186.	3.0	44
75	Geographical variation in the goldenâ€striped salamander,Chioglossa lusitanicaBocage, 1864 and the description of a newly recognized subspecies. Journal of Natural History, 2007, 41, 925-936.	0.5	8
76	Historical biogeography and conservation of the golden-striped salamander (Chioglossa lusitanica) in northwestern Iberia: integrating ecological, phenotypic and phylogeographic data. , 2007, , 189-205.		11
77	Newts under siege: range expansion of Triturus pygmaeus isolates populations of its sister species. Diversity and Distributions, 2007, 13, 580-586.	4.1	25
78	Contemporary gene flow and the spatio-temporal genetic structure of subdivided newt populations (Triturus cristatus, T. marmoratus). Journal of Evolutionary Biology, 2005, 18, 619-628.	1.7	72
79	Phylogeography of two European newt species - discordance between mtDNA and morphology. Molecular Ecology, 2005, 14, 2475-2491.	3.9	173
80	Delineating fine-scale genetic units in amphibians:Probing the primacy of ponds. Conservation Genetics, 2005, 6, 227-234.	1.5	39
81	Genetic exchange across a hybrid zone within the Iberian endemic golden-striped salamander, Chioglossa lusitanica. Molecular Ecology, 2004, 14, 245-254.	3.9	52
82	Phylogenetic relationships and biogeography of midwife toads (Discoglossidae: <i>Alytes</i>). Journal of Biogeography, 2004, 31, 603-618.	3.0	96
83	Seasonal Variation in Sex Ratio and Asynchronous Presence at Ponds of Male and Female Triturus Newts. Journal of Herpetology, 2002, 36, 30-35.	0.5	22
84	Microsatellite loci in the crested newt (Triturus cristatus) and their utility in other newt taxa. Conservation Genetics, 2002, 3, 85-87.	1.5	28
85	Environmental correlates of toad abundance and population genetic diversity. Biological Conservation, 2001, 98, 201-210.	4.1	91
86	Amphibian Declines and Environmental Change: Use of Remote-Sensing Data to Identify Environmental Correlates. Conservation Biology, 2001, 15, 903-913.	4.7	69
87	The annual number of breeding adults and the effective population size of syntopic newts (Triturus) Tj ETQq1	1 0.784314	rgBT /Overlo
88	Biogeography of the golden-striped salamander Chioglossa lusitanica: a field survey and spatial modelling approach. Ecography, 2001, 24, 618-624.	4.5	44
89	Pre-Pleistocene Refugia and Differentiation between Populations of the Caucasian Salamander (Mertensiella caucasica). Molecular Phylogenetics and Evolution, 2000, 14, 414-422.	2.7	50
90	Genetic subdivision, glacial refugia and postglacial recolonization in the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Molecular Ecology, 2000, 9, 771-781.	3.9	102

#	Article	IF	CITATIONS
91	Post-breeding migrations of newts (Triturus cristatus and T. marmoratus) with contrasting ecological requirements. Journal of Zoology, 2000, 251, 297-306.	1.7	86
92	Evolutionary relationships among Europan newts (genus Triturus) as inferred from two mtDNA fragments. Pflugers Archiv European Journal of Physiology, 2000, 439, r021-r022.	2.8	5
93	Taxonomy of the banded newt, Triturus vittatus: morphological and allozyme data. Amphibia - Reptilia, 2000, 21, 155-168.	0.5	13
94	Phylogenetic relationships of the European newts (genus Triturus) tested with mitochondrial DNA sequence data. Contributions To Zoology, 1999, 68, 73-81.	0.5	29
95	Geographic variation and taxonomy of crested newts (Triturus cristatus superspecies): morphological and mitochondrial DNA data. Contributions To Zoology, 1999, 68, 181-203.	0.5	64
96	Sexual selection and male mate choice in the common toad,Bufo bufo. Ethology Ecology and Evolution, 1999, 11, 407-414.	1.4	35
97	The distribution and conservation status of the Danube crested newt, Triturus dobrogicus. Amphibia - Reptilia, 1997, 18, 133-142.	0.5	20
98	Effective number of breeding adults in Bufo bufo estimated from ageâ€specific variation at minisatellite loci. Molecular Ecology, 1997, 6, 701-712.	3.9	77
99	Cost effective drift fences for toads and newts. Amphibia - Reptilia, 1995, 16, 137-145.	0.5	17
100	Biochemical evidence pertaining to the taxonomic relationships within the family Chamaeleonidae. Amphibia - Reptilia, 1991, 12, 245-265.	0.5	19
101	Genetic differentiation among Iberian populations of the Alpine newt, Triturus alpestris. Amphibia - Reptilia, 1991, 12, 409-421.	0.5	11
102	A phylogeny for the Old World newts, genusTriturus: biochemical and behavioural data. Journal of Zoology, 1989, 219, 645-664.	1.7	73