Yuzhou Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8726787/publications.pdf Version: 2024-02-01

		147566	133063
107	3,992	31	59
papers	citations	h-index	g-index
111	111	111	6252
111	111	111	0252
all docs	docs citations	times ranked	citing authors

Υυζμου Μμ

#	Article	IF	CITATIONS
1	Programmed albumin nanoparticles regulate immunosuppressive pivot to potentiate checkpoint blockade cancer immunotherapy. Nano Research, 2022, 15, 593-602.	5.8	8
2	DNA origamiâ€based nanoâ€hunter enriches lowâ€abundance point mutations by targeting wild-type gene segments. Chinese Chemical Letters, 2022, 33, 2052-2056.	4.8	3
3	Engineering surface patterns on nanoparticles: new insights into nano-bio interactions. Journal of Materials Chemistry B, 2022, 10, 2357-2383.	2.9	11
4	Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. International Journal of Molecular Sciences, 2022, 23, 2622.	1.8	11
5	Bioinspired Multifunctional Black Phosphorus Hydrogel with Antibacterial and Antioxidant Properties: A Stepwise Countermeasure for Diabetic Skin Wound Healing. Advanced Healthcare Materials, 2022, 11, e2102791.	3.9	69
6	Chemical Modification for the "Off″On―Regulation of Enzyme Activity. Macromolecular Rapid Communications, 2022, 43, e2200195.	2.0	7
7	Catalytic Atroposelective Electrophilic Amination of Indoles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
8	Defined positive charge patterns created on DNA nanostructures determine cellular uptake efficiency. Nano Letters, 2022, 22, 5330-5338.	4.5	6
9	Inorganic Nanoparticles Applied as Functional Therapeutics. Advanced Functional Materials, 2021, 31, 2008171.	7.8	51
10	Fine Customization of Calcium Phosphate Nanostructures with Site-Specific Modification by DNA Templated Mineralization. ACS Nano, 2021, 15, 1555-1565.	7.3	29
11	Regioselectivity and stereoselectivity of intramolecular [2 + 2] photocycloaddition catalyzed by chiral thioxanthone: a quantum chemical study. Organic and Biomolecular Chemistry, 2021, 19, 1532-1540.	1.5	7
12	Enzymatically synthesised MnO ₂ nanoparticles for efficient near-infrared photothermal therapy and dual-responsive magnetic resonance imaging. Nanoscale, 2021, 13, 11093-11103.	2.8	24
13	Alleviating Catalyst Decay Enables Efficient Intermolecular C(sp ³)–H Amination under Mechanochemical Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 1684-1691.	3.2	15
14	Collagen mineralization and its applications in hard tissue repair. Materials Chemistry Frontiers, 2021, 5, 7071-7087.	3.2	11
15	Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase. Journal of the American Chemical Society, 2021, 143, 617-622.	6.6	32
16	Functional DNA–Polymer Conjugates. Chemical Reviews, 2021, 121, 11030-11084.	23.0	72
17	Intracellular Bottomâ€up Synthesis of Ultrasmall CuS Nanodots in Cancer Cells for Simultaneous Photothermal Therapy and COXâ€2 Inactivation. Advanced Functional Materials, 2021, 31, 2101297.	7.8	41
18	Improved Synthesis of 1â€Clycosyl Thioacetates and Its Application in the Synthesis of Thioglucoside Gliflozin Analogues. European Journal of Organic Chemistry, 2021, 2021, 2940-2949.	1.2	11

#	Article	IF	CITATIONS
19	Selenium nanoparticles inhibit the formation of atherosclerosis in apolipoprotein E deficient mice by alleviating hyperlipidemia and oxidative stress. European Journal of Pharmacology, 2021, 902, 174120.	1.7	18
20	Designing Squaraine Dyes with Bright Deepâ€Red Aggregationâ€Induced Emission for Specific and Ratiometric Fluorescent Detection of Hypochlorite. Advanced Functional Materials, 2021, 31, 2105452.	7.8	34
21	Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice. Chemico-Biological Interactions, 2021, 347, 109601.	1.7	12
22	Digital Numbers Constructed by Fine Patterned Polydopamine on DNA Templates. Macromolecular Rapid Communications, 2021, 42, 2100441.	2.0	2
23	<i>In situ</i> synthesis of fluorescent polydopamine on biogenic MnO ₂ nanoparticles as stimuli responsive multifunctional theranostics. Biomaterials Science, 2021, 9, 5897-5906.	2.6	3
24	Comparison of Selenium Nanoparticles and Sodium Selenite on the Alleviation of Early Atherosclerosis by Inhibiting Endothelial Dysfunction and Inflammation in Apolipoprotein E-Deficient Mice. International Journal of Molecular Sciences, 2021, 22, 11612.	1.8	12
25	DNA Transformations for Diagnosis and Therapy. Advanced Functional Materials, 2021, 31, 2008279.	7.8	11
26	Mitochondrion-targeted selenium nanoparticles enhance reactive oxygen species-mediated cell death. Nanoscale, 2020, 12, 1389-1396.	2.8	31
27	Polymer coated nanodiamonds as gemcitabine prodrug with enzymatic sensitivity for pancreatic cancer treatment. Progress in Natural Science: Materials International, 2020, 30, 711-717.	1.8	10
28	DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials. Topics in Current Chemistry, 2020, 378, 31.	3.0	12
29	Manganese(II) Oxidizing Bacteria as Whole-Cell Catalyst for β-Keto Ester Oxidation. International Journal of Molecular Sciences, 2020, 21, 1709.	1.8	5
30	Fine and bidirectional regulation of toehold-mediated DNA strand displacement by a wedge-like DNA tool. Chemical Communications, 2020, 56, 8794-8797.	2.2	10
31	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte Chemie, 2020, 132, 5761-5769.	1.6	2
32	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte Chemie - International Edition, 2020, 59, 5712-5720.	7.2	20
33	Synthesis of α-indolylacrylates as potential anticancer agents using a BrÃ,nsted acid ionic liquid catalyst and the butyl acetate solvent. RSC Advances, 2020, 10, 13507-13516.	1.7	4
34	Silk Fibroin-Confined Star-Shaped Decahedral Silver Nanoparticles as Fluorescent Probe for Detection of Cu ²⁺ and Pyrophosphate. ACS Biomaterials Science and Engineering, 2020, 6, 2770-2777.	2.6	20
35	Harnessing structurally unbiased <i>ortho</i> -benzoquinone monoimine for biomimetic oxidative [4+2] cycloaddition with enamines. Chemical Communications, 2020, 56, 5965-5968.	2.2	8
36	DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials. Topics in Current Chemistry Collections, 2020, , 57-81.	0.2	2

#	Article	IF	CITATIONS
37	Unified and Benign Synthesis of Spirooxindoles via Bifunctional and Recyclable Iodide‧altâ€Catalyzed Oxidative Coupling in Water. European Journal of Organic Chemistry, 2019, 2019, 6028-6033.	1.2	18
38	Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution. ACS Nano, 2019, 13, 8749-8759.	7.3	22
39	Enantioselective Oxidative Phenol-Indole [3 + 2] Coupling Enabled by Biomimetic Mn(III)/BrÃ,nsted Acid Relay Catalysis. ACS Catalysis, 2019, 9, 7285-7291.	5.5	52
40	Highâ€Contrast Magnetic Resonance Imaging and Efficient Delivery of an Albumin Nanotheranostic in Tripleâ€Negative Breast Cancer Xenografts. Advanced Therapeutics, 2019, 2, 1900084.	1.6	15
41	Unraveling In Vivo Brain Transport of Protein oated Fluorescent Nanodiamonds. Small, 2019, 15, e1902992.	5.2	35
42	Rhodium-catalyzed aminohydroxylation of unactivated alkenes in aqueous media for the benign synthesis of 1,2-amino alcohols. Green Chemistry, 2019, 21, 780-784.	4.6	23
43	Bioinspired radical cyclization of tryptamines: synthesis of peroxypyrroloindolenines as potential anti-cancer agents. Chemical Communications, 2019, 55, 63-66.	2.2	18
44	Cationic Albumin Encapsulated DNA Origami for Enhanced Cellular Transfection and Stability. Materials, 2019, 12, 949.	1.3	22
45	Hemin-catalyzed biomimetic oxidative phenol–indole [3 + 2] reactions in aqueous media. Organic and Biomolecular Chemistry, 2019, 17, 9994-9998.	1.5	14
46	Polymer tube nanoreactors <i>via</i> DNA-origami templated synthesis. Chemical Communications, 2018, 54, 2808-2811.	2.2	36
47	Construction of tunable peptide nucleic acid junctions. Chemical Communications, 2018, 54, 2846-2849.	2.2	14
48	Fabrication of Defined Polydopamine Nanostructures by DNA Origamiâ€īemplated Polymerization. Angewandte Chemie, 2018, 130, 1603-1607.	1.6	25
49	Assembly of C3a-Peroxylated Pyrroloindolines via Interrupted Witkop Oxidation. Organic Letters, 2018, 20, 7937-7941.	2.4	22
50	Encoding function into polypeptide-oligonucleotide precision biopolymers. Chemical Communications, 2018, 54, 11797-11800.	2.2	3
51	Synergistic Catalysis-Enabled Thia-Aza-Prins Cyclization with DMSO and Disulfides: Entry to Sulfenylated 1,3-Oxazinanes and Oxazolidines. Organic Letters, 2018, 20, 5899-5904.	2.4	15
52	Copper-Catalyzed Regioselective Intramolecular Electrophilic Sulfenoamination via Lewis Acid Activation of Disulfides under Aerobic Conditions. Organic Letters, 2018, 20, 4350-4353.	2.4	40
53	Fabrication of Defined Polydopamine Nanostructures by DNA Origamiâ€Templated Polymerization. Angewandte Chemie - International Edition, 2018, 57, 1587-1591.	7.2	100
54	Controlling Cellular Uptake and Toxicity of Polyphenylene Dendrimers by Chemical Functionalization. ChemBioChem, 2017, 18, 960-964.	1.3	18

#	Article	IF	CITATIONS
55	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
56	NIR-emitting and photo-thermal active nanogold as mitochondria-specific probes. Biomaterials Science, 2017, 5, 966-971.	2.6	17
57	Spatiotemporally Controlled Release of Rhoâ€Inhibiting C3 Toxin from a Protein–DNA Hybrid Hydrogel for Targeted Inhibition of Osteoclast Formation and Activity. Advanced Healthcare Materials, 2017, 6, 1700392.	3.9	57
58	Synthesis and bioconjugation of first alkynylated poly(dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrole)s. Polymer Chemistry, 2017, 8, 7113-7118.	1.9	6
59	The CAM cancer xenograft as a model for initial evaluation of MR labelled compounds. Scientific Reports, 2017, 7, 46690.	1.6	39
60	GalnN Quantum Wells as Optochemical Transducers for Chemical Sensors and Biosensors. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 15-23.	1.9	16
61	Directing intracellular supramolecular assembly with N-heteroaromatic quaterthiophene analogues. Nature Communications, 2017, 8, 1850.	5.8	22
62	8. Nanodiamonds for Biological Applications. , 2017, , .		0
63	Nanodiamonds for Biological Applications. ChemistrySelect, 2017, 2, .	0.7	13
64	Frontispiz: Bottom-Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atom-Transfer Radical Polymerization. Angewandte Chemie, 2016, 128, .	1.6	0
65	Bottomâ€Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atomâ€Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2016, 55, 5692-5697.	7.2	64
66	Bottomâ€Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atomâ€Transfer Radical Polymerization. Angewandte Chemie, 2016, 128, 5786-5791.	1.6	29
67	PEGylated Cationic Serum Albumin for Boosting Retroviral Gene Transfer. ChemBioChem, 2016, 17, 1504-1508.	1.3	5
68	A Supramolecular Approach toward Bioinspired PAMAMâ€Đendronized Fusion Toxins. Macromolecular Bioscience, 2016, 16, 803-810.	2.1	7
69	Fluorescent Nanodiamond–Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging. Nano Letters, 2016, 16, 6236-6244.	4.5	68
70	Frontispiece: Bottom-Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atom-Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2016, 55, .	7.2	0
71	Diamantâ€Quantensensoren in der Biologie. Angewandte Chemie, 2016, 128, 6696-6709.	1.6	3
72	Diamond Quantum Devices in Biology. Angewandte Chemie - International Edition, 2016, 55, 6586-6598.	7.2	202

#	Article	IF	CITATIONS
73	Self-assembling oligothiophene–bolaamphiphiles for loading and controlled release of doxorubicin into living cells. Chemical Communications, 2016, 52, 3235-3238.	2.2	6
74	Water-soluble allyl sulfones for dual site-specific labelling of proteins and cyclic peptides. Chemical Science, 2016, 7, 3234-3239.	3.7	66
75	pH responsive supramolecular core-shell protein hybrids. Supramolecular Chemistry, 2016, 28, 742-746.	1.5	11
76	Converting Human Proteins into Precision Polymer Therapeutics. Current Pharmaceutical Design, 2016, 22, 2866-2872.	0.9	0
77	Biopolymers: Programmable Biopolymers for Advancing Biomedical Applications of Fluorescent Nanodiamonds (Adv. Funct. Mater. 42/2015). Advanced Functional Materials, 2015, 25, 6558-6558.	7.8	0
78	Programmable Biopolymers for Advancing Biomedical Applications of Fluorescent Nanodiamonds. Advanced Functional Materials, 2015, 25, 6576-6585.	7.8	77
79	A Polyphenylene Dendrimer Drug Transporter with Precisely Positioned Amphiphilic Surface Patches. Advanced Healthcare Materials, 2015, 4, 377-384.	3.9	28
80	DNA-Based Self-Assembly of Fluorescent Nanodiamonds. Journal of the American Chemical Society, 2015, 137, 9776-9779.	6.6	66
81	Receptor selective ruthenium-somatostatin photosensitizer for cancer targeted photodynamic applications. Chemical Communications, 2015, 51, 12552-12555.	2.2	84
82	A Disulfide Intercalator Toolbox for the Siteâ€Directed Modification of Polypeptides. Chemistry - A European Journal, 2015, 21, 228-238.	1.7	33
83	Protein–polymer therapeutics: a macromolecular perspective. Biomaterials Science, 2015, 3, 214-230.	2.6	72
84	A Writable Polypeptide–DNA Hydrogel with Rationally Designed Multiâ€modification Sites. Small, 2015, 11, 1138-1143.	5.2	119
85	Constructing Hybrid Protein Zymogens through Protective Dendritic Assembly. Angewandte Chemie - International Edition, 2014, 53, 324-328.	7.2	70
86	Programmable protein–DNA hybrid hydrogels for the immobilization and release of functional proteins. Chemical Communications, 2014, 50, 14620-14622.	2.2	66
87	Self-Assembly of High Molecular Weight Polypeptide Copolymers Studied via Diffusion Limited Aggregation. Biomacromolecules, 2014, 15, 219-227.	2.6	14
88	Programming Supramolecular Biohybrids as Precision Therapeutics. Accounts of Chemical Research, 2014, 47, 3471-3480.	7.6	43
89	Bis-sulfide bioconjugates for glutathione triggered tumor responsive drug release. Chemical Communications, 2014, 50, 1116-1118.	2.2	70
90	Dendronized Albumin Core–Shell Transporters with High Drug Loading Capacity. Biomacromolecules, 2013, 14, 367-376.	2.6	37

#	Article	IF	CITATIONS
91	A Core–Shell Albumin Copolymer Nanotransporter for High Capacity Loading and Twoâ€Step Release of Doxorubicin with Enhanced Antiâ€Leukemia Activity. Advanced Healthcare Materials, 2013, 2, 884-894.	3.9	69
92	Cross-conjugation of DNA, proteins and peptides via a pH switch. Chemical Science, 2013, 4, 1889.	3.7	25
93	pH Responsive Janus-like Supramolecular Fusion Proteins for Functional Protein Delivery. Journal of the American Chemical Society, 2013, 135, 17254-17257.	6.6	33
94	Enhancing cellular uptake of GFP via unfolded supercharged protein tags. Biomaterials, 2013, 34, 4360-4367.	5.7	32
95	Precision Biopolymers from Protein Precursors for Biomedical Applications. Macromolecular Rapid Communications, 2013, 34, 380-392.	2.0	21
96	Efficient Delivery of p53 and Cytochrome C by Supramolecular Assembly of a Dendritic Multiâ€Domain Delivery System. Advanced Healthcare Materials, 2013, 2, 1620-1629.	3.9	24
97	Polymer Complexes in Biological Applications. Advances in Polymer Science, 2013, , 211-235.	0.4	1
98	Host–guest interactions in polycationic human serum albumin bioconjugates. Soft Matter, 2012, 8, 11106.	1.2	17
99	A Quantum Dot Photoswitch for DNA Detection, Gene Transfection, and Liveâ€Cell Imaging. Small, 2012, 8, 3465-3475.	5.2	48
100	Convenient Approach to Polypeptide Copolymers Derived from Native Proteins. Biomacromolecules, 2012, 13, 1890-1898.	2.6	30
101	An Efficient Approach for Preparing Giant Polypeptide Triblock Copolymers by Protein Dimerization. Macromolecular Rapid Communications, 2012, 33, 1304-1309.	2.0	6
102	Multifunctional Polypeptide–PEO Nanoreactors via the Hydrophobic Switch. Macromolecular Rapid Communications, 2012, 33, 1474-1481.	2.0	10
103	Nano-Sized Albumin-Copolymer Micelles for Efficient Doxorubicin Delivery. Biointerphases, 2012, 7, 5.	0.6	25
104	pH-Responsive Quantum Dots via an Albumin Polymer Surface Coating. Journal of the American Chemical Society, 2010, 132, 5012-5014.	6.6	94
105	An efficient route to vinyl substituted oxadiazoles and triazoles using phenylselanyl derivatives as precursor. Tetrahedron, 2007, 63, 7866-7873.	1.0	11
106	Catalytic Atroposelective ElectrophilicÂAmination of Indoles. Angewandte Chemie, 0, , .	1.6	7
107	QM/MM Calculations Suggested Concerted O‒O Bond Cleavage and Substrate Oxidation by Nonheme Diiron Toluene/oâ€xylene Monooxygenase. Chemistry - an Asian Journal, 0, , .	1.7	4