Shaozhen Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/872674/publications.pdf

Version: 2024-02-01

214 papers

12,016 citations

56 h-index 99 g-index

219 all docs

219 docs citations

219 times ranked 6894 citing authors

#	Article	IF	CITATIONS
1	Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Progress in Retinal and Eye Research, 2017, 60, 66-100.	7.3	675
2	Three dimensional optical angiography. Optics Express, 2007, 15, 4083.	1.7	632
3	Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography. , 2016, 57, OCT362.		408
4	Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Optics Letters, 2010, 35, 1467.	1.7	350
5	Optical coherence tomography based angiography [Invited]. Biomedical Optics Express, 2017, 8, 1056.	1.5	342
6	Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Optics Express, 2010, 18, 8220.	1.7	310
7	In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Optics Express, 2008, $16,11438$.	1.7	303
8	Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. Journal of Biomedical Optics, 2015, 20, 100901.	1.4	300
9	Optical Coherence Tomography Angiography of Asymptomatic Neovascularization in Intermediate Age-Related Macular Degeneration. Ophthalmology, 2016, 123, 1309-1319.	2.5	230
10	Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. Journal of Biomedical Optics, 2016, 21, 066008.	1.4	225
11	Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. Optics Express, 2009, 17, 8926.	1.7	219
12	A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography. , 2018, 59, 203.		219
13	Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. Journal of the Royal Society Interface, 2012, 9, 831-841.	1.5	217
14	Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 948.	0.9	187
15	Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Applied Physics Letters, 2007, 90, 164105.	1.5	165
16	Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. Biomedical Optics Express, 2015, 6, 4130.	1.5	157
17	Optical coherence elastography in ophthalmology. Journal of Biomedical Optics, 2017, 22, 1.	1.4	154
18	Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood. Applied Optics, 2002, 41, 258.	2.1	145

#	Article	IF	Citations
19	Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Applied Physics Letters, 2006, 89, 144103.	1.5	144
20	OCT-based elastography for large and small deformations. Optics Express, 2006, 14, 11585.	1.7	140
21	In vivo full range complex Fourier domain optical coherence tomography. Applied Physics Letters, 2007, 90, 054103.	1.5	133
22	Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 13µm wavelength. Optics Express, 2007, 15, 11402.	1.7	128
23	Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds <i>In Vivo</i> IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 545-554.	1.9	122
24	Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography–Based Microangiography. , 2016, 57, OCT475.		120
25	User-guided segmentation for volumetric retinal optical coherence tomography images. Journal of Biomedical Optics, 2014, 19, 086020.	1.4	117
26	Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study. Journal of Biomedical Optics, 2010, 15, 056005.	1.4	115
27	Wide-field optical coherence tomography based microangiography for retinal imaging. Scientific Reports, 2016, 6, 22017.	1.6	110
28	Swept-Source OCT Angiography of Macular Telangiectasia Type 2. Ophthalmic Surgery Lasers and Imaging Retina, 2014, 45, 369-380.	0.4	105
29	Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation. Journal of Biomedical Optics, 2013, 18, 121505.	1.4	104
30	Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography. Optics Letters, 2012, 37, 722.	1.7	103
31	Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity. Scientific Reports, 2016, 6, 38967.	1.6	102
32	Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. Nature Communications, 2019, 10, 584.	5.8	100
33	Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector. Optics Letters, 2011, 36, 3975.	1.7	97
34	Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography. IEEE Transactions on Biomedical Engineering, 2011, 58, 2316-2323.	2.5	93
35	Three-Dimensional High-Resolution Imaging of Gold Nanorods Uptake in Sentinel Lymph Nodes. Nano Letters, 2011, 11, 2938-2943.	4. 5	93
36	Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry. Optics Express, 2011, 19, 10153.	1.7	89

#	Article	IF	Citations
37	Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography. Journal of Biomedical Optics, 2013, 18, 1.	1.4	88
38	Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking. Journal of Biomedical Optics, 2015, 20, 066008.	1.4	87
39	Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography. Biomedical Optics Express, 2012, 3, 2220.	1.5	86
40	High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography. Journal of Biomedical Optics, 2010, 15, 026011.	1.4	85
41	A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography. Physics in Medicine and Biology, 2006, 51, 3231-3239.	1.6	80
42	Review of optical coherence tomography based angiography in neuroscience. Neurophotonics, 2016, 3, 010902.	1.7	80
43	Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography. Optics Letters, 2006, 31, 3001.	1.7	78
44	Conditional Ablation of Neuroprogenitor Cells in Adult Mice Impedes Recovery of Poststroke Cognitive Function and Reduces Synaptic Connectivity in the Perforant Pathway. Journal of Neuroscience, 2013, 33, 17314-17325.	1.7	78
45	Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source. Biomedical Optics Express, 2016, 7, 4734.	1.5	78
46	Pulsatile motion of the trabecular meshwork in healthy human subjects quantified by phase-sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4, 2051.	1.5	76
47	Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions. Lasers in Surgery and Medicine, 2018, 50, 183-193.	1.1	75
48	Quantification of Choriocapillaris with Phansalkar Local Thresholding: Pitfalls to Avoid. American Journal of Ophthalmology, 2020, 213, 161-176.	1.7	74
49	In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography. Lasers in Surgery and Medicine, 2011, 43, 122-129.	1.1	73
50	Guidelines for Imaging the Choriocapillaris Using OCT Angiography. American Journal of Ophthalmology, 2021, 222, 92-101.	1.7	72
51	Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography. Biomedical Optics Express, 2011, 2, 579.	1.5	71
52	Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography. Quantitative Imaging in Medicine and Surgery, 2018, 8, 658-666.	1.1	69
53	Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiology of Aging, 2018, 70, 148-159.	1.5	68
54	Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography. Optics Letters, 2014, 39, 838.	1.7	67

#	Article	IF	Citations
55	Estimating Human Trabecular Meshwork Stiffness by Numerical Modeling and Advanced OCT Imaging. , 2017, 58, 4809.		66
56	Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quantitative Imaging in Medicine and Surgery, 2018, 8, 743-753.	1.1	65
57	Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection. Optics Express, 2007, 15, 7950.	1.7	62
58	Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quantitative Imaging in Medicine and Surgery, 2016, 6, 125-133.	1.1	61
59	Microvascular imaging of the skin. Physics in Medicine and Biology, 2019, 64, 07TR01.	1.6	61
60	Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: modelÂand experiments with acoustic micro-tapping OCE. Scientific Reports, 2020, 10, 12983.	1.6	60
61	Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer. Cancer Letters, 2015, 357, 121-128.	3.2	59
62	Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion. Experimental Eye Research, 2017, 158, 171-186.	1.2	59
63	The role of water desorption on optical clearing of biotissue: Studied with near infrared reflectance spectroscopy. Medical Physics, 2003, 30, 1246-1253.	1.6	57
64	Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in <i>ex vivo</i> nonhuman primate eyes. Journal of Biomedical Optics, 2012, 17, 0760261.	1.4	56
65	Impaired Leptomeningeal Collateral Flow Contributes to the Poor Outcome following Experimental Stroke in the Type 2 Diabetic Mice. Journal of Neuroscience, 2015, 35, 3851-3864.	1.7	54
66	Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters. Journal of Biomedical Optics, 2013, 18, 086004.	1.4	53
67	Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate. Applied Physics Letters, 2016, 108, 191104.	1.5	51
68	Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography. PLoS ONE, 2014, 9, e113658.	1.1	51
69	Fourier domain optical coherence tomography achieves full range complex imagingin vivoby introducing a carrier frequency during scanning. Physics in Medicine and Biology, 2007, 52, 5897-5907.	1.6	50
70	Optical coherence tomography angiography monitors human cutaneous wound healing over time. Quantitative Imaging in Medicine and Surgery, 2018, 8, 135-150.	1.1	50
71	Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography. Journal of Biomedical Optics, 2015, 20, 016001.	1.4	49
72	Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke. Neurophotonics, 2015, 2, 025006.	1.7	49

#	Article	IF	Citations
73	High resolution imaging of acne lesion development and scarring in human facial skin using OCT-based microangiography. Lasers in Surgery and Medicine, 2015, 47, 231-238.	1.1	48
74	Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels. Biomedical Optics Express, 2016, 7, 2709.	1.5	48
75	Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography. Journal of Biomedical Optics, 2014, 19, 016013.	1.4	47
76	Capillary blood flow imaging within human finger cuticle using optical microangiography. Journal of Biophotonics, 2015, 8, 46-51.	1.1	47
77	Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves. Biomedical Optics Express, 2014, 5, 4313.	1.5	46
78	Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography. Journal of Biomedical Optics, 2014, 19, 1.	1.4	46
79	Improving visualization and quantitative assessment of choriocapillaris with swept source OCTA through registration and averaging applicable to clinical systems. Scientific Reports, 2018, 8, 16826.	1.6	46
80	Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT. Microvascular Research, 2015, 101, 86-95.	1.1	45
81	Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems. Physics in Medicine and Biology, 2018, 63, 015023.	1.6	45
82	Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application. Biomedical Optics Express, 2014, 5, 1403.	1.5	44
83	Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source. Biomedical Optics Express, 2017, 8, 420.	1.5	43
84	Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source. Optics Letters, 2015, 40, 5007.	1.7	42
85	Aqueous outflow regulation – 21st century concepts. Progress in Retinal and Eye Research, 2021, 83, 100917.	7.3	42
86	Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice. Biomedical Optics Express, 2012, 3, 2976.	1.5	41
87	Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media. Applied Physics Letters, 2016, 109, 043701.	1.5	41
88	Optical coherence tomography angiography-based capillary velocimetry. Journal of Biomedical Optics, 2017, 22, 066008.	1.4	41
89	Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds <i>in vivo</i> . Physics in Medicine and Biology, 2007, 52, N531-N537.	1.6	40
90	Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment. Journal of Biomedical Optics, 2010, 15, 020502.	1.4	40

#	Article	IF	CITATIONS
91	Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method. Journal of Biomedical Optics, 2013, 18, 111417.	1.4	39
92	Wide velocity range Doppler optical microangiography using optimized step-scanning protocol with phase variance mask. Journal of Biomedical Optics, 2013, 18, 106015.	1.4	37
93	Development of a clinical prototype of a miniature hand-held optical coherence tomography probe for prematurity and pediatric ophthalmic imaging. Biomedical Optics Express, 2019, 10, 2383.	1.5	37
94	Robust numerical phase stabilization for longâ€range sweptâ€source optical coherence tomography. Journal of Biophotonics, 2017, 10, 1398-1410.	1,1	36
95	Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications. Biomedical Optics Express, 2016, 7, 1905.	1.5	35
96	Wide-field optical coherence tomography angiography enabled by two repeated measurements of B-scans. Optics Letters, 2016, 41, 2330.	1.7	35
97	Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340Ânm. Journal of Biomedical Optics, 2014, 19, 1.	1.4	34
98	Cerebral capillary velocimetry based on temporal OCT speckle contrast. Biomedical Optics Express, 2016, 7, 4859.	1.5	34
99	Spatial resolution in dynamic optical coherence elastography. Journal of Biomedical Optics, 2019, 24, 1.	1.4	34
100	Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo. Biomedical Optics Express, 2013, 4, 1214.	1.5	32
101	OCT Study of Mechanical Properties Associated with Trabecular Meshwork and Collector Channel Motion in Human Eyes. PLoS ONE, 2016, 11, e0162048.	1.1	32
102	Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry. Scientific Reports, 2018, 8, 4107.	1.6	32
103	Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography. Journal of Biomedical Optics, 2012, 17, 057002.	1.4	30
104	Quantification of Pulse-Dependent Trabecular Meshwork Motion in Normal Humans Using Phase-Sensitive OCT., 2018, 59, 3675.		30
105	Does group velocity always reflect elastic modulus in shear wave elastography?. Journal of Biomedical Optics, 2019, 24, 1.	1.4	30
106	Assessment of microcirculation dynamics during cutaneous wound healing phases <i>in vivo</i> vusing optical microangiography. Journal of Biomedical Optics, 2014, 19, 076015.	1.4	29
107	Handheld swept-source optical coherence tomography with angiography in awake premature neonates. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1495-1502.	1.1	29
108	<i>In vivo</i> blood flow imaging of inflammatory human skin induced by tape stripping using optical microangiography. Journal of Biophotonics, 2015, 8, 265-272.	1.1	27

#	Article	IF	Citations
109	Tracking Dynamic Microvascular Changes during Healing after Complete Biopsy Punch on the Mouse Pinna Using Optical Microangiography. PLoS ONE, 2013, 8, e57976.	1.1	26
110	Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain. Journal of Neuroscience Methods, 2016, 270, 132-137.	1.3	26
111	Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow. Journal of Biomedical Optics, 2016, 21, 1.	1.4	26
112	Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations. Journal of Biomedical Optics, 2017, 22, 1.	1.4	26
113	Highly efficient eigen decomposition based statistical optical microangiography. Quantitative Imaging in Medicine and Surgery, 2016, 6, 557-563.	1.1	25
114	Reduced Pulsatile Trabecular Meshwork Motion in Eyes With Primary Open Angle Glaucoma Using Phase-Sensitive Optical Coherence Tomography. , 2020, 61, 21.		24
115	Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization. Quantitative Imaging in Medicine and Surgery, 2013, 3, 5-17.	1.1	24
116	Polarization sensitive optical coherence tomography with single input for imaging depth-resolved collagen organizations. Light: Science and Applications, 2021, 10, 237.	7.7	24
117	Impaired Collateral Flow Compensation During Chronic Cerebral Hypoperfusion in the Type 2 Diabetic Mice. Stroke, 2016, 47, 3014-3021.	1.0	23
118	BACILLARY LAYER DETACHMENT OVERLYING REDUCED CHORIOCAPILLARIS FLOW IN ACUTE IDIOPATHIC MACULOPATHY. Retinal Cases and Brief Reports, 2022, 16, 59-66.	0.3	23
119	Measurement of Strain and Strain Rate in Embryonic Chick Heart In Vivo Using Spectral Domain Optical Coherence Tomography. IEEE Transactions on Biomedical Engineering, 2011, 58, 2333-2338.	2.5	21
120	Microvascular imaging and monitoring of human oral cavity lesions in vivo by swept-source OCT-based angiography. Lasers in Medical Science, 2018, 33, 123-134.	1.0	21
121	A noninvasive imaging and measurement using optical coherence tomography angiography for the assessment of gingiva: An in vivo study. Journal of Biophotonics, 2018, 11, e201800242.	1.1	20
122	Quantitative Handheld Swept-Source Optical Coherence Tomography Angiography in Awake Preterm and Full-Term Infants. Translational Vision Science and Technology, 2020, 9, 19.	1.1	20
123	Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice. Journal of Neuroscience Methods, 2010, 194, 108-115.	1.3	18
124	Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact. Journal of Biomedical Optics, 2010, 15, 030510.	1.4	18
125	Repeatability of vessel density measurement in human skin by OCT â€based microangiography. Skin Research and Technology, 2017, 23, 607-612.	0.8	18
126	Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography. Applied Physics Letters, 2018, 113, .	1.5	18

#	Article	IF	Citations
127	Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid. Journal of Biomedical Optics, 2017, 22, 1.	1.4	18
128	Multifunctional in vivo imaging for monitoring wound healing using sweptâ€source polarizationâ€sensitive optical coherence tomography. Lasers in Surgery and Medicine, 2018, 50, 213-221.	1.1	17
129	Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing. Lasers in Surgery and Medicine, 2014, 46, 470-478.	1.1	16
130	Super-shear evanescent waves for non-contact elastography of soft tissues. Applied Physics Letters, 2019, 115, 083701.	1.5	16
131	Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography. Quantitative Imaging in Medicine and Surgery, 2012, 2, 207-12.	1.1	16
132	Robust principal component analysis in optical micro-angiography. Quantitative Imaging in Medicine and Surgery, 2017, 7, 654-667.	1.1	15
133	Evaluating changes of blood flow in retina, choroid, and outer choroid in rats in response to elevated intraocular pressure by 1300†nm swept-source OCT. Microvascular Research, 2019, 121, 37-45.	1.1	15
134	Imaging human skin autograft integration with optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2021, 11, 784-796.	1.1	15
135	Differences in cerebral blood vasculature and flow in awake and anesthetized mouse cortex revealed by quantitative optical coherence tomography angiography. Journal of Neuroscience Methods, 2021, 353, 109094.	1.3	15
136	Visualizing choriocapillaris using swept-source optical coherence tomography angiography with various probe beam sizes. Biomedical Optics Express, 2019, 10, 2847.	1.5	15
137	Application of OCTâ€Derived Attenuation Coefficient in Acute Burnâ€Damaged Skin. Lasers in Surgery and Medicine, 2021, 53, 1192-1200.	1.1	14
138	Probing elastic anisotropy of human skin in vivo with light using non-contact acoustic micro-tapping OCE and polarization sensitive OCT. Scientific Reports, 2022, 12, 3963.	1.6	14
139	Biomechanics of human trabecular meshwork in healthy and glaucoma eyes via dynamic Schlemm's canal pressurization. Computer Methods and Programs in Biomedicine, 2022, 221, 106921.	2.6	14
140	The impact of native leptomeningeal collateralization on rapid blood flow recruitment following ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2165-2178.	2.4	13
141	Validation of a Compensation Strategy Used to Detect Choriocapillaris Flow Deficits Under Drusen With Swept Source OCT Angiography. American Journal of Ophthalmology, 2020, 220, 115-127.	1.7	13
142	Optical coherence tomography based microangiography findings in hydroxychloroquine toxicity. Quantitative Imaging in Medicine and Surgery, 2016, 6, 178-183.	1.1	12
143	Comparing imaging capabilities of spectral domain and swept source optical coherence tomography angiography in healthy subjects and central serous retinopathy. Eye and Vision (London, England), 2018, 5, 19.	1.4	12
144	Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2019, 9, 858-881.	1.1	12

#	Article	IF	CITATIONS
145	Mean-Subtraction Method for De-Shadowing of Tail Artifacts in Cerebral OCTA Images: A Proof of Concept. Materials, 2020, 13, 2024.	1.3	12
146	Polarization sensitive optical coherence tomography for imaging microvascular information within living tissue without polarization-induced artifacts. Biomedical Optics Express, 2020, 11, 6379.	1.5	12
147	Depth-resolved 3D visualization of coronary microvasculature with optical microangiography. Physics in Medicine and Biology, 2016, 61, 7536-7550.	1.6	11
148	OCTâ€based angiography of human dermal microvascular reactions to local stimuli: Implications for increasing capillary blood collection volumes. Lasers in Surgery and Medicine, 2018, 50, 908-916.	1.1	11
149	Analysis of correlations between local geographic atrophy growth rates and local OCT angiography-measured choriocapillaris flow deficits. Biomedical Optics Express, 2021, 12, 4573.	1.5	11
150	Automated morphometric measurement of the retinal pigment epithelium complex and choriocapillaris using swept source OCT. Biomedical Optics Express, 2020, 11, 1834.	1.5	11
151	Procedure and protocols for optical imaging of cerebral blood flow and hemodynamics in awake mice. Biomedical Optics Express, 2020, 11, 3288.	1.5	11
152	Robust three-dimensional registration on optical coherence tomography angiography for speckle reduction and visualization. Quantitative Imaging in Medicine and Surgery, 2020, 11, 879-894.	1.1	11
153	LIF, a mitogen for choroidal endothelial cells, protects the choriocapillaris: implications for prevention of geographic atrophy. EMBO Molecular Medicine, 2022, 14, e14511.	3.3	11
154	A Practical Method for Creating Targeted Focal Ischemic Stroke in the Cortex of Nonhuman Primates. , 2019, 2019, 3515-3518.		10
155	Changes in cochlear blood flow in mice due to loud sound exposure measured with Doppler optical microangiography and laser Doppler flowmetry. Quantitative Imaging in Medicine and Surgery, 2013, 3, 235-42.	1.1	10
156	Polarization state tracing method to map local birefringent properties in samples using polarization sensitive optical coherence tomography. Biomedical Optics Express, 2020, 11, 6852.	1.5	10
157	Optical coherence tomography correlates multiple measures of tissue damage following acute burn injury. Quantitative Imaging in Medicine and Surgery, 2019, 9, 731-741.	1.1	9
158	Electrically tunable lens integrated with optical coherence tomography angiography for cerebral blood flow imaging in deep cortical layers in mice. Optics Letters, 2019, 44, 5037.	1.7	9
159	High-resolution computed tomography of refractive index distribution by transillumination low-coherence interferometry. Optics Letters, 2010, 35, 91.	1.7	8
160	OCTâ€Based Angiography and Surface Topography in Burnâ€Damaged Skin. Lasers in Surgery and Medicine, 2021, 53, 849-860.	1.1	8
161	A novel automatic <scp>3D</scp> stitching algorithm for optical coherence tomography angiography and its application in dermatology. Journal of Biophotonics, 2021, 14, e202100152.	1.1	8
162	Automated vessel diameter quantification and vessel tracing for <scp>OCT</scp> angiography. Journal of Biophotonics, 2020, 13, e202000248.	1.1	7

#	Article	IF	Citations
163	Guided vascularization in the rat heart leads to transient vessel patterning. APL Bioengineering, 2020, 4, 016105.	3.3	7
164	Abnormal retinal capillary blood flow in autosomal dominant Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12162.	1.2	7
165	Semi-automated registration and segmentation for gingival tissue volume measurement on 3D OCT images. Biomedical Optics Express, 2020, 11, 4536.	1.5	7
166	Frequency dependence of laser ultrasonic SAW phase velocities measurements. Ultrasonics, 2013, 53, 191-195.	2.1	6
167	Noninvasive multimodal imaging by integrating optical coherence tomography with autofluorescence imaging for dental applications. Journal of Biophotonics, 2020, 13, e202000026.	1.1	6
168	Optical coherence tomography for the investigation of skin adaptation to mechanical stress. Skin Research and Technology, 2020, 26, 627-638.	0.8	6
169	Choroidal Thickness by Handheld Swept-Source Optical Coherence Tomography in Term Newborns. Translational Vision Science and Technology, 2021, 10, 27.	1.1	6
170	Effects of Schlemm's Canal Expansion: Biomechanics and MIGS Implications. Life, 2021, 11, 176.	1.1	6
171	Moving-source elastic wave reconstruction for high-resolution optical coherence elastography. Journal of Biomedical Optics, 2016, 21, 116006.	1.4	6
172	Handheld swept-source optical coherence tomography guided by smartphone-enabled wide-field autofluorescence photography for imaging facial sebaceous glands. Optics Letters, 2020, 45, 5704.	1.7	6
173	Pulsatile motion of trabecular meshwork in a patient with iris cyst by phase-sensitive optical coherence tomography: a case report. Quantitative Imaging in Medicine and Surgery, 2015, 5, 171-3.	1.1	6
174	Valve-Like Outflow System Behavior With Motion Slowing in Glaucoma Eyes: Findings Using a Minimally Invasive Glaucoma Surgery–MIGS-Like Platform and Optical Coherence Tomography Imaging. Frontiers in Medicine, 2022, 9, 815866.	1.2	6
175	Spatiotemporal monitoring of changes in oxy/deoxy-hemoglobin concentration and blood pulsation on human skin using smartphone-enabled remote multispectral photoplethysmography. Biomedical Optics Express, 2021, 12, 2919.	1.5	5
176	Optical Coherence Tomography for the Investigation of Skin Adaptation in Lower-Limb Prosthesis Users. Journal of Prosthetics and Orthotics, 2021, 33, 255-265.	0.2	5
177	Vitreous opacities in infants born full-term and preterm by handheld swept-source optical coherence tomography. Journal of AAPOS, 2022, 26, 20.e1-20.e7.	0.2	5
178	A versatile toolbox for studying cortical physiology in primates. Cell Reports Methods, 2022, 2, 100183.	1.4	5
179	Flexible wideâ€field optical microâ€angiography based on Fourierâ€domain multiplexed dualâ€beam swept source optical coherence tomography. Journal of Biophotonics, 2018, 11, e201700203.	1.1	4
180	Optical coherence tomography angiography measures blood pulsatile waveforms at variable tissue depths. Quantitative Imaging in Medicine and Surgery, 2020, 11, 907-917.	1.1	4

#	Article	ΙF	Citations
181	Shear wave elastography using phase sensitive optical coherence tomography. , 2014, , .		3
182	Shear wave elastography of ex vivo human corneas using phase-sensitive optical coherence tomography. , 2014, , .		3
183	Mapping and Quantitating Penetrating Vessels in Cortical Brain Using Eigen-Decomposition of OCT Signals and Subsequent Principal Component Analysis. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-9.	1.9	3
184	1700 nm broadband laser source enables deep brain optical biopsy. Light: Science and Applications, 2021, 10, 205.	7.7	3
185	Stable fiber-based polarization-sensitive optical coherence tomography using polarization maintaining common-path interferometer. Journal of Biomedical Optics, 2020, 25, .	1.4	3
186	Shear wave elastography method combining phase-sensitive optical coherence tomography and coded acoustic radiation force. , $2014, , .$		2
187	Amplitude-modulated ultrasound radiation force combined with phase-sensitive optical coherence tomography for shear wave elastography. Proceedings of SPIE, 2015, , .	0.8	2
188	Quantitative measurement and real-time tracking of high intensity focused ultrasound using phase-sensitive optical coherence tomography: Feasibility study. International Journal of Hyperthermia, 2016, 32, 713-722.	1.1	2
189	Imaging pulse wave velocity in mouse retina using swept-source OCT (Conference Presentation). , 2016,		2
190	Optical coherence elastography based on high speed imaging of single-hot laser-induced acoustic waves at 16 kHz frame rate. , 2016, , .		2
191	Automated counting of cerebral penetrating vessels using optical coherence tomography images of a mouse brain in vivo. Medical Physics, 0, , .	1.6	2
192	Effects of blood flow on high intensity focused ultrasound ablation., 2011,,.		1
193	High-speed imaging of remotely induced shear waves using phase-sensitive optical coherence tomography. , 2015, , .		1
194	Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer. , 2015 , , .		1
195	Optical projection angiography. Applied Physics Letters, 2016, 109, 193702.	1.5	1
196	Ultralong-range optical coherence tomography-based angiography by akinetic swept source. , 2017, , .		1
197	Wide field OCT angiography by using swept source OCT in living human eye. , 2017, , .		1
198	Optical microangiography reveals temporal and depth-resolved hemodynamic change in mouse barrel cortex during whisker stimulation. Journal of Biomedical Optics, 2020, 25, .	1.4	1

#	Article	IF	Citations
199	Assessing cross-sectional elasticity map by dynamic imaging acoustic waves with phase sensitive optical coherence tomography. , 2013, , .		0
200	Feasibility of a hybrid elastographic-microfluidic device to rapidly process and assess pancreatic cancer biopsies for pathologists., 2014, 2014, 271-275.		0
201	Visualization of ultrasonically induced shear wave propagation using phase sensitive optical coherence tomography. , 2014, , .		0
202	Moving beam shear wave reconstruction for both ultrasound and optical coherence tomography applications. , 2015 , , .		0
203	Mapping tissue shear modulus on Thiel soft-embalmed mouse skin with shear wave optical coherence elastography. , 2015, , .		0
204	Application of new optical coherence elastography to monitor the mineralization processing in bone tissue engineering constructs., 2015,,.		0
205	High speed all optical shear wave imaging optical coherence elastography (Conference Presentation). , $2016, \ldots$		0
206	Elasticity imaging of speckle-free tissue regions with moving acoustic radiation force and phase-sensitive optical coherence tomography. Proceedings of SPIE, $2016, , .$	0.8	0
207	Non-contact rapid optical coherence elastography by high-speed 4D imaging of elastic waves. , 2017, , .		0
208	Efficient Conversion From 1.06 to 2.1 ŵm Wavelength For Generation of Shear Waves in a Soft Medium. , 2017, , .		0
209	Notice of Removal: Air-coupled ARF-based excitation of broadband mechanical waves for dynamic elastography. , 2017, , .		0
210	Gingivitis resolution followed by optical coherence tomography and fluorescence imaging: A case study. Journal of Biophotonics, 2021, 14, e202100191.	1.1	0
211	Imaging the brain and its vasculature in aging. , 2021, , 153-162.		0
212	10.1063/1.4959827.1., 2016,,.		0
213	Air-coupled acoustic radiation force source for non-contact measurement of soft media elasticity (Conference Presentation)., 2017,,.		0
214	Optical coherence tomography angiography and cutaneous wound healing., 2018,,.		0