Masato Onodera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8726420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	566
2	First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	327
3	Second data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	320
4	Quiescent Galaxies 1.5 Billion Years after the Big Bang and Their Progenitors. Astrophysical Journal, 2020, 889, 93.	4.5	117
5	ISM EXCITATION AND METALLICITY OF STAR-FORMING GALAXIES AT $Z\hat{A}^{3}\%f\hat{A}^{3}$.3 FROM NEAR-IR SPECTROSCOPY Astrophysical Journal, 2016, 822, 42.	'4.5	110
6	SILVERRUSH. V. Census of Lyα, [O iii] λ5007, Hα, and [C ii] 158 μm Line Emission with â^¼1000 LAEs at zÂ=Â4 Revealed with Subaru/HSC. Astrophysical Journal, 2018, 859, 84.	1.9ậ€"7.0 4.5	102
7	Dust Attenuation, Bulge Formation, and Inside-out Quenching of Star Formation in Star-forming Main Sequence Galaxies at z â^1⁄4 2*. Astrophysical Journal, 2018, 859, 56.	4.5	100
8	THE AGES, METALLICITIES, AND ELEMENT ABUNDANCE RATIOS OF MASSIVE QUENCHED GALAXIES AT \$zsimeq 1.6\$. Astrophysical Journal, 2015, 808, 161.	4.5	91
9	SILVERRUSH. VIII. Spectroscopic Identifications of Early Large-scale Structures with Protoclusters over 200 Mpc at zÂâ^1⁄4Â6–7: Strong Associations of Dusty Star-forming Galaxies. Astrophysical Journal, 2019, 883, 142.	4.5	71
10	MINOR MERGERS OR PROGENITOR BIAS? THE STELLAR AGES OF SMALL AND LARGE QUENCHED GALAXIES. Astrophysical Journal, 2016, 831, 173.	4.5	62
11	METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT <i>Z</i> = 2. Astrophysical Journal, 2015, 801, 132.	4.5	61
12	Stellar Velocity Dispersion of a Massive Quenching Galaxy at zÂ=Â4.01. Astrophysical Journal Letters, 2019, 885, L34.	8.3	61
13	Connection between Stellar Mass Distributions within Galaxies and Quenching Since zÂ=Â2. Astrophysical Journal, 2017, 837, 2.	4.5	58
14	REST-UV ABSORPTION LINES AS METALLICITY ESTIMATOR: THE METAL CONTENT OF STAR-FORMING GALAXIES AT z â^1⁄4 5. Astrophysical Journal, 2016, 822, 29.	4.5	53
15	Multi-wavelength Properties of Type 1 and Type 2 AGN Host Galaxies in the Chandra-COSMOS Legacy Survey. Astrophysical Journal, 2019, 872, 168.	4.5	44
16	Extremely Metal-poor Representatives Explored by the Subaru Survey (EMPRESS). I. A Successful Machine-learning Selection of Metal-poor Galaxies and the Discovery of a Galaxy with M* < 10 ⁶ M _⊙ and 0.016 Z _⊙ * †â€;. Astrophysical Journal. 2020. 898. 142	4.5 2.	43
17	A DIRECT CONSTRAINT ON THE GAS CONTENT OF A MASSIVE, PASSIVELY EVOLVING ELLIPTICAL GALAXY AT <i>>z</i> > = 1.43. Astrophysical Journal Letters, 2015, 806, L20.	8.3	40
18	Hyper Suprime-Cam Subaru Strategic Program: A Mass-dependent Slope of the Galaxy Sizeâ^'Mass Relation at z < 1. Astrophysical Journal, 2021, 921, 38.	4.5	38

MASATO ONODERA

#	Article	IF	CITATIONS
19	THE RED SEQUENCE AT BIRTH IN THE GALAXY CLUSTER Cl J1449+0856 AT $z = 2$. Astrophysical Journal Letters, 2016, 833, L20.	8.3	28
20	A GIANT LYα NEBULA IN THE CORE OF AN X-RAY CLUSTER AT ZÂ=Â1.99: IMPLICATIONS FOR EARLY ENERGY INJECTION. Astrophysical Journal, 2016, 829, 53.	4.5	27
21	Near-infrared Emission Lines in Starburst Galaxies at 0.5Â<ÂzÂ<Â0.9: Discovery of a Merger Sequence of Extreme Obscurations. Astrophysical Journal Letters, 2018, 862, L22.	8.3	24
22	AGN feeding and feedback in Fornax A. Astronomy and Astrophysics, 2021, 656, A45.	5.1	21
23	Compact, bulge-dominated structures of spectroscopically confirmed quiescent galaxies at <i>z</i> â‰^ 3. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2659-2676.	4.4	20
24	The Interstellar Medium in [O iii]-selected Star-forming Galaxies at zÂâ^1⁄4Â3.2. Astrophysical Journal, 2017, 849, 39.	4.5	16
25	EMPRESS. II. Highly Fe-enriched Metal-poor Galaxies with â^1⁄41.0 (Fe/O) _⊙ and 0.02 (O/H) _⊙ : Possible Traces of Supermassive (>300 M _⊙) Stars in Early Galaxies* â Astrophysical Journal, 2021, 913, 22.	€â£;.	16
26	Broadband Selection, Spectroscopic Identification, and Physical Properties of a Population of Extreme Emission-line Galaxies at 3 < z < 3.7*. Astrophysical Journal, 2020, 904, 180.	4.5	16
27	EMPRESS. IV. Extremely Metal-poor Galaxies Including Very Low-mass Primordial Systems with M _* = 10 ⁴ –10 ⁵ M _⊙ and 2%–3% (O/H): High (Fe/O) Suggestive of Metal Enrichment by Hypernovae/Pair-instability Supernovae. Astrophysical Journal, 2022. 925. 111.	4.5	16
28	EMPRESS. III. Morphology, Stellar Population, and Dynamics of Extremely Metal-poor Galaxies (EMPGs): Are EMPGs Local Analogs of High-z Young Galaxies?*. Astrophysical Journal, 2021, 918, 54.	4.5	15
29	Prime Focus Spectrograph (PFS) for the Subaru telescope: ongoing integration and future plans. , 2018, , .		15
30	A 16Âdeg2 survey of emission-line galaxies at <i>z</i> Â<Â1.6 from HSC-SSP PDR2 and CHORUS. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	14
31	Dust, Gas, and Metal Content in Star-forming Galaxies at z â^1⁄4 3.3 Revealed with ALMA and Near-IR Spectroscopy. Astrophysical Journal, 2021, 908, 15.	4.5	13
32	A Spectroscopic Study of a Rich Cluster at zÂ=Â1.52 with Subaru and LBT: The Environmental Impacts on the Mass–Metallicity Relation. Astrophysical Journal, 2019, 877, 118.	4.5	6
33	Quantifying the Effect of Field Variance on the Hα Luminosity Function with the New Numerical Galaxy Catalog (μ2 ² GC). Astrophysical Journal, 2020, 895, 9.	4.5	3
34	What Determines the H i Gas Content in Galaxies? Morphological Dependence of the H i Gas Fraction across the M _* –SFR Plane. Astrophysical Journal, 2021, 918, 68.	4.5	2