
Hidetaka Kosako

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8726367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A proximity biotinylation-based approach to identify protein-E3 ligase interactions induced by PROTACs and molecular glues. Nature Communications, 2022, 13, 183.	12.8	36
2	A simple method for labeling proteins and antibodies with biotin using the proximity biotinylation enzyme TurboID. Biochemical and Biophysical Research Communications, 2022, 592, 54-59.	2.1	4
3	Identification of an endoplasmic reticulum proteostasis modulator that enhances insulin production in pancreatic \hat{I}^2 cells. Cell Chemical Biology, 2022, , .	5.2	4
4	Identification and validation of new ERK substrates by phosphoproteomic technologies including Phos-tag SDS-PAGE. Journal of Proteomics, 2022, 258, 104543.	2.4	3
5	Binding of LAG-3 to stable peptide-MHC class II limits TÂcell function and suppresses autoimmunity and anti-cancer immunity. Immunity, 2022, 55, 912-924.e8.	14.3	59
6	Cell cycle-specific phase separation regulated by protein charge blockiness. Nature Cell Biology, 2022, 24, 625-632.	10.3	42
7	Proteomic analysis of spheroids of rhabdomyosarcoma cells cultured with decellularized muscle extracts. Journal of Electrophoresis, 2022, 66, 1-4.	0.4	0
8	The ubiquitination-deubiquitination cycle on the ribosomal protein eS7A is crucial for efficient translation. IScience, 2021, 24, 102145.	4.1	16
9	Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane. Molecular Cell, 2021, 81, 1397-1410.e9.	9.7	16
10	Uncovering a novel role of PLCβ4 in selectively mediating TCR signaling in CD8+ but not CD4+ T cells. Journal of Experimental Medicine, 2021, 218, .	8.5	7
11	Identification of a chemical chaperone for mitigating protein aggregation and proteotoxicity during endoplasmic reticulum stress. FASEB Journal, 2021, 35, .	0.5	0
12	Cell-autonomous <i>Toxoplasma</i> killing program requires Irgm2 but not its microbe vacuolar localization. Life Science Alliance, 2021, 4, e202000960.	2.8	10
13	Clathrin-mediated endocytosis is essential for the selective degradation of maternal membrane proteins and preimplantation development. Development (Cambridge), 2021, 148, .	2.5	11
14	A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes. Journal of Clinical Investigation, 2021, 131, .	8.2	25
15	Mammalian BCAS3 and C16orf70 associate with the phagophore assembly site in response to selective and non-selective autophagy. Autophagy, 2021, 17, 2011-2036.	9.1	6
16	The tertiary structure of the human Xkr8–Basigin complex that scrambles phospholipids at plasma membranes. Nature Structural and Molecular Biology, 2021, 28, 825-834.	8.2	26
17	Mass spectrometry-based methods for analysing the mitochondrial interactome in mammalian cells. Journal of Biochemistry, 2020, 167, 225-231.	1.7	11
18	Quantitative proteomics indicate a strong correlation of mitotic phospho-/dephosphorylation with non-structured regions of substrates. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140295.	2.3	5

HIDETAKA KOSAKO

#	Article	IF	CITATIONS
19	PITHD1 is a proteasome-interacting protein essential for male fertilization. Journal of Biological Chemistry, 2020, 295, 1658-1672.	3.4	8
20	Enhanced O-GlcNAcylation Mediates Cytoprotection under Proteasome Impairment by Promoting Proteasome Turnover in Cancer Cells. IScience, 2020, 23, 101299.	4.1	4
21	Prion protein signaling induces M2 macrophage polarization and protects from lethal influenza infection in mice. PLoS Pathogens, 2020, 16, e1008823.	4.7	7
22	BioID screening of biotinylation sites using the avidin-like protein Tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING). Journal of Biological Chemistry, 2020, 295, 11174-11183.	3.4	24
23	Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery. Journal of Cell Biology, 2020, 219, .	5.2	18
24	AirlD, a novel proximity biotinylation enzyme, for analysis of protein–protein interactions. ELife, 2020, 9, .	6.0	75
25	The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation. ELife, 2020, 9, .	6.0	42
26	Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 57-61.	2.3	8
27	Structural Basis of Mitochondrial Scaffolds by Prohibitin Complexes: Insight into a Role of the Coiled-Coil Region. IScience, 2019, 19, 1065-1078.	4.1	72
28	Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2907-2912.	7.1	44
29	Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL. Journal of Biological Chemistry, 2019, 294, 10300-10314.	3.4	79
30	Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11418-11427.	7.1	106
31	Parkinâ€mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes. EMBO Reports, 2019, 20, e47728.	4.5	35
32	Trans-omics Impact of Thymoproteasome in Cortical Thymic Epithelial Cells. Cell Reports, 2019, 29, 2901-2916.e6.	6.4	27
33	Identification of candidate molecular targets of the novel antineoplastic antimitotic NP-10. Scientific Reports, 2019, 9, 16825.	3.3	4
34	Cell-based HTS identifies a chemical chaperone for preventing ER protein aggregation and proteotoxicity. ELife, 2019, 8, .	6.0	22
35	Baicalein disturbs the morphological plasticity and motility of breast adenocarcinoma cells depending on the tumor microenvironment. Genes To Cells, 2018, 23, 466-479.	1.2	7
36	Activation of stimulator of interferon genes (STING) induces ADAM17-mediated shedding of the immune semaphorin SEMA4D. Journal of Biological Chemistry, 2018, 293, 7717-7726.	3.4	22

HIDETAKA KOSAKO

#	Article	IF	CITATIONS
37	The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans. Nature Cell Biology, 2018, 20, 81-91.	10.3	44
38	Clobal Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE. Methods in Molecular Biology, 2017, 1487, 137-149.	0.9	8
39	Functional analysis of disease-associated protein kinases using phosphoproteomic technologies including Phos-tag. Denki Eido, 2017, 61, 53-57.	0.0	0
40	Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nature Communications, 2016, 7, 10485.	12.8	54
41	PKA Regulates PINK1 Stability and Parkin Recruitment to Damaged Mitochondria through Phosphorylation of MIC60. Molecular Cell, 2016, 62, 371-384.	9.7	95
42	Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nature Communications, 2016, 7, 12756.	12.8	30
43	Analog-to-digital Conversion in the Cellular Signaling System. Seibutsu Butsuri, 2016, 56, 334-336.	0.1	0
44	Phosphorylated ubiquitin chain is the genuine Parkin receptor. Journal of Cell Biology, 2015, 209, 111-128.	5.2	217
45	Epithelial protein lost in neoplasm modulates platelet-derived growth factor–mediated adhesion and motility of mesangial cells. Kidney International, 2014, 86, 548-557.	5.2	18
46	Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510, 162-166.	27.8	1,185