
Ma Angeles FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/872616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multivariate Correlation between Color and Mineral Composition of Honeys and by Their Botanical Origin. Journal of Agricultural and Food Chemistry, 2005, 53, 2574-2580.	5.2	203
2	Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chemistry, 2004, 88, 537-542.	8.2	177
3	The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Research International, 2006, 39, 220-229.	6.2	125
4	Direct infusion mass spectrometry for metabolomic phenotyping of diseases. Bioanalysis, 2017, 9, 131-148.	1.5	75
5	Effect of storage on the phenolic content, volatile composition and colour of white wines from the varieties Zalema and Colombard. Food Chemistry, 2009, 113, 530-537.	8.2	72
6	Recommendations and Best Practices for Standardizing the Pre-Analytical Processing of Blood and Urine Samples in Metabolomics. Metabolites, 2020, 10, 229.	2.9	71
7	Optimization of an extraction method of aroma compounds in white wine using ultrasound. Talanta, 1999, 50, 413-421.	5.5	64
8	Metabolomics in Alzheimer's disease: The need of complementary analytical platforms for the identification of biomarkers to unravel the underlying pathology. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1071, 75-92.	2.3	64
9	Contribution to the study of avocado honeys by their mineral contents using inductively coupled plasma optical emission spectrometry. Food Chemistry, 2005, 92, 305-309.	8.2	60
10	Effects of prefermentative skin contact conditions on colour and phenolic content of white wines. Journal of Food Engineering, 2007, 78, 238-245.	5.2	57
11	Investigation of the effect of genotype and agronomic conditions on metabolomic profiles of selected strawberry cultivars with different sensitivity to environmental stress. Plant Physiology and Biochemistry, 2016, 101, 14-22.	5.8	51
12	Assessment of the Differences in the Phenolic Composition of Five Strawberry Cultivars (Fragaria×ananassaDuch.) Grown in Two Different Soilless Systems. Journal of Agricultural and Food Chemistry, 2007, 55, 1846-1852.	5.2	48
13	Phenolics composition in Erica sp. differentially exposed to metal pollution in the Iberian Southwestern Pyritic Belt. Bioresource Technology, 2009, 100, 446-451.	9.6	48
14	Phenolic composition of white wines with a prefermentative maceration at experimental and industrial scale. Journal of Food Engineering, 2007, 80, 327-335.	5.2	43
15	Influence of cultivar and culture system on nutritional and organoleptic quality of strawberry. Journal of the Science of Food and Agriculture, 2014, 94, 866-875.	3.5	42
16	Combination of complementary data mining methods for geographical characterization of extra virgin olive oils based on mineral composition. Food Chemistry, 2018, 261, 42-50.	8.2	42
17	Comparison of the effectiveness of solid-phase and ultrasound-mediated liquid–liquid extractions to determine the volatile compounds of wine. Talanta, 2008, 76, 929-935.	5.5	36
18	Nutritional and Nutraceutical Quality of Strawberries in Relation to Harvest Time and Crop Conditions. Journal of Agricultural and Food Chemistry, 2014, 62, 5749-5760.	5.2	34

Ma Angeles FernÃindez

#	Article	IF	CITATIONS
19	Optimization of Growth and Carotenoid Production by Haloferax mediterranei Using Response Surface Methodology. Marine Drugs, 2018, 16, 372.	4.6	33
20	An Overview on the Importance of Combining Complementary Analytical Platforms in Metabolomic Research. Current Topics in Medicinal Chemistry, 2018, 17, 3289-3295.	2.1	28
21	PHYSICOCHEMICAL CHARACTERISTICS AND MINERAL CONTENT OF STRAWBERRIES GROWN IN SOIL AND SOILLESS SYSTEM. Journal of Food Quality, 2007, 30, 837-853.	2.6	27
22	Optimization of an HPLC-HG-AFS method for screening Sb(v), Sb(iii), and Me3SbBr2in water samples. Journal of Analytical Atomic Spectrometry, 2002, 17, 1400-1404.	3.0	23
23	Multivariate Statistical Analysis of the Colorâ^'Anthocyanin Relationships in Different Soilless-Grown Strawberry Genotypes. Journal of Agricultural and Food Chemistry, 2008, 56, 2735-2741.	5.2	22
24	Multi-Chemical Profiling of Strawberry as a Traceability Tool to Investigate the Effect of Cultivar and Cultivation Conditions. Foods, 2020, 9, 96.	4.3	21
25	EFFECT OF TIME AND STORAGE CONDITIONS ON MAJOR VOLATILE COMPOUNDS OF ZALEMA WHITE WINE. Journal of Food Quality, 2011, 34, 100-110.	2.6	20
26	Application of Targeted Metabolomics to Investigate Optimum Growing Conditions to Enhance Bioactive Content of Strawberry. Journal of Agricultural and Food Chemistry, 2017, 65, 9559-9567.	5.2	19
27	High-Throughput Direct Mass Spectrometry-Based Metabolomics to Characterize Metabolite Fingerprints Associated with Alzheimer's Disease Pathogenesis. Metabolites, 2018, 8, 52.	2.9	19
28	Assessment of Virgin Olive Oil Adulteration by a Rapid Luminescent Method. Foods, 2019, 8, 287.	4.3	19
29	Combination of vintage and new-fashioned analytical approaches for varietal and geographical traceability of olive oils. LWT - Food Science and Technology, 2019, 111, 99-104.	5.2	15
30	Fatty Acid Profiling for the Authentication of Iberian Hams According to the Feeding Regime. Foods, 2020, 9, 149.	4.3	14
31	Simple and Efficient Green Extraction of Steviol Glycosides from Stevia rebaudiana Leaves. Foods, 2019, 8, 402.	4.3	13
32	Volatile Profiling of Strawberry Fruits Cultivated in a Soilless System to Investigate Cultivar-Dependent Chemical Descriptors. Foods, 2020, 9, 768.	4.3	12
33	Spectrophotometric evaluation of acidity constants of isonicotinic acid. International Journal of Pharmaceutics, 1986, 34, 81-92.	5.2	11
34	Mechanistic Insights into Alzheimer's Disease Unveiled through the Investigation of Disturbances in Central Metabolites and Metabolic Pathways. Biomedicines, 2021, 9, 298.	3.2	10
35	Combining vegetable oils and bioactive compounds via inverse vulcanization for antioxidant and antimicrobial materials. Polymer Testing, 2022, 109, 107546.	4.8	10
36	Colour of Amontillado wines aged in two oak barrel types. European Food Research and Technology, 2006, 224, 321-327.	3.3	8

Ma Angeles FernÃindez

#	Article	IF	CITATIONS
37	Potential of Ultraviolet-Visible Spectroscopy for the Differentiation of Spanish Vinegars According to the Geographical Origin and the Prediction of Their Functional Properties. Foods, 2021, 10, 1830.	4.3	8
38	Mass Spectrometry-Based Metabolomic Multiplatform for Alzheimer's Disease Research. Methods in Molecular Biology, 2018, 1750, 125-137.	0.9	7
39	Numerical evaluation of overlapping acidity constants from the ratio of absorbances at two wavelengths. Mikrochimica Acta, 1986, 88, 395-406.	5.0	6
40	High-Throughput Metabolomics Based on Direct Mass Spectrometry Analysis in Biomedical Research. Methods in Molecular Biology, 2019, 1978, 27-38.	0.9	6
41	Characterization and Differentiation of Spanish Vinegars from Jerez and Condado de Huelva Protected Designations of Origin. Foods, 2019, 8, 341.	4.3	5
42	Metabolomics: An Emerging Tool for Wine Characterization and the Investigation of Health Benefits. , 2019, , 315-350.		5
43	High-Throughput Method for Wide-Coverage and Quantitative Phenolic Fingerprinting in Plant-Origin Foods and Urine Samples. Journal of Agricultural and Food Chemistry, 2022, 70, 7796-7804.	5.2	4
44	Spectrophotometric evaluation of acidity constants of two-step overlapping equilibria with application to the isonicotinic acid system. Microchemical Journal, 1987, 35, 206-217.	4.5	3
45	A Bilogarithmic Method for the Spectrophotometric Evaluation of Acidity Constants of Two-Step Overlapping Equilibria. Analytical Letters, 1993, 26, 163-181.	1.8	3
46	Acid-base equilibria of biacetylmonoxime-isonicotinoylhydrazone. Journal of Analytical Chemistry, 2006, 61, 393-395.	0.9	3
47	Evolution of Physicochemical Parameters during the Thermal-Based Production of Ãgua-mel, a Traditional Portuguese Honey-Related Food Product. Molecules, 2022, 27, 57.	3.8	2
48	Multicompartmental High-Throughput Metabolomics Based on Mass Spectrometry. Neuromethods, 2021, , 189-198.	0.3	0