## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8726121/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nature Communications, 2015, 6, 8340.                                                                                                | 12.8 | 578       |
| 2  | Visible-Light Driven Overall Conversion of CO <sub>2</sub> and H <sub>2</sub> O to CH <sub>4</sub><br>and O <sub>2</sub> on 3D-SiC@2D-MoS <sub>2</sub> Heterostructure. Journal of the American<br>Chemical Society, 2018, 140, 14595-14598. | 13.7 | 361       |
| 3  | Relationship between Oxygen Defects and the Photocatalytic Property of ZnO Nanocrystals in Nafion<br>Membranes. Langmuir, 2009, 25, 1218-1223.                                                                                               | 3.5  | 312       |
| 4  | In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for<br>boosting photocatalytic CO2 reduction with H2O. Applied Catalysis B: Environmental, 2022, 301,<br>120802.                                      | 20.2 | 289       |
| 5  | Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C 3 N 4 photocatalyst. Applied Catalysis B: Environmental, 2018, 222, 35-43.                                                                       | 20.2 | 252       |
| 6  | Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism. Applied Catalysis B: Environmental, 2020, 274, 119063.                                                                | 20.2 | 243       |
| 7  | Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies. Acta Materialia, 2007, 55, 4699-4705.                                                                                           | 7.9  | 217       |
| 8  | Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy and Environmental Science, 2018, 11, 294-298.                                                                              | 30.8 | 202       |
| 9  | Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nature Communications, 2020, 11, 3043.                                                                             | 12.8 | 200       |
| 10 | BiVO4 /Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Applied Catalysis B: Environmental, 2020, 270, 118876.                                                                          | 20.2 | 179       |
| 11 | Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets.<br>Energy and Environmental Science, 2014, 7, 973.                                                                                        | 30.8 | 159       |
| 12 | Persian buttercup-like BiOBrxCl1-x solid solution for photocatalytic overall CO2 reduction to CO and O2. Applied Catalysis B: Environmental, 2019, 243, 734-740.                                                                             | 20.2 | 159       |
| 13 | Surface oxygen vacancy and defect engineering of WO <sub>3</sub> for improved visible light photocatalytic performance. Catalysis Science and Technology, 2018, 8, 4399-4406.                                                                | 4.1  | 158       |
| 14 | Dual couples Bi metal depositing and Ag@AgI islanding on BiOI 3D architectures for synergistic bactericidal mechanism of E. coli under visible light. Applied Catalysis B: Environmental, 2017, 204, 1-10.                                   | 20.2 | 156       |
| 15 | Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions, 2011, 40, 2607.                                                                             | 3.3  | 149       |
| 16 | Bi <sub>2</sub> MoO <sub>6</sub> Nanobelts for Crystal Facetâ€Enhanced Photocatalysis. Small, 2014, 10, 2791-2795.                                                                                                                           | 10.0 | 145       |
| 17 | Hot ï€â€Electron Tunneling of Metal–Insulator–COF Nanostructures for Efficient Hydrogen<br>Production. Angewandte Chemie - International Edition, 2019, 58, 18290-18294.                                                                     | 13.8 | 138       |
| 18 | Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 273, 119050.                                                                         | 20.2 | 138       |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Layered metal–organic framework/graphene nanoarchitectures for organic photosynthesis under<br>visible light. Journal of Materials Chemistry A, 2015, 3, 24261-24271.                                                                         | 10.3 | 130       |
| 20 | Photocatalytic reduction of CO <sub>2</sub> with H <sub>2</sub> O to CH <sub>4</sub> over<br>ultrathin SnNb <sub>2</sub> O <sub>6</sub> 2D nanosheets under visible light irradiation. Green<br>Chemistry, 2016, 18, 1355-1363.               | 9.0  | 129       |
| 21 | Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity. Journal of Colloid and Interface Science, 2021, 593, 231-243.                                                                           | 9.4  | 117       |
| 22 | Photocatalytic reduction of CO <sub>2</sub> with H <sub>2</sub> O to CH <sub>4</sub> on<br>Cu( <scp>i</scp> ) supported TiO <sub>2</sub> nanosheets with defective {001} facets. Physical<br>Chemistry Chemical Physics, 2015, 17, 9761-9770. | 2.8  | 110       |
| 23 | Photocatalytic CO 2 reduction with H 2 O over LaPO 4 nanorods deposited with Pt cocatalyst. Applied<br>Catalysis B: Environmental, 2015, 168-169, 458-464.                                                                                    | 20.2 | 104       |
| 24 | A Long‣ived Mononuclear Cyclopentadienyl Ruthenium Complex Grafted onto Anatase<br>TiO <sub>2</sub> for Efficient CO <sub>2</sub> Photoreduction. Angewandte Chemie - International<br>Edition, 2016, 55, 8314-8318.                          | 13.8 | 96        |
| 25 | Plasmonic control of solar-driven CO2 conversion at the metal/ZnO interfaces. Applied Catalysis B:<br>Environmental, 2019, 256, 117823.                                                                                                       | 20.2 | 95        |
| 26 | Photocatalytic Reduction of CO <sub>2</sub> with H <sub>2</sub> O Mediated by Ce-Tailored Bismuth Oxybromide Surface Frustrated Lewis Pairs. ACS Catalysis, 2022, 12, 4016-4025.                                                              | 11.2 | 95        |
| 27 | Vacuum heat-treatment of carbon nitride for enhancing photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 17797-17807.                                                                                              | 10.3 | 94        |
| 28 | CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity. Applied Surface Science, 2016, 363, 154-160.                                                                                     | 6.1  | 94        |
| 29 | Single-site Sn-grafted Ru/TiO2 photocatalysts for biomass reforming: Synergistic effect of dual co-catalysts and molecular mechanism. Journal of Catalysis, 2013, 303, 141-155.                                                               | 6.2  | 89        |
| 30 | Layered C <sub>3</sub> N <sub>3</sub> S <sub>3</sub> Polymer/Graphene Hybrids as Metal-Free Catalysts<br>for Selective Photocatalytic Oxidation of Benzylic Alcohols under Visible Light. ACS Catalysis, 2014, 4,<br>3302-3306.               | 11.2 | 89        |
| 31 | LaOClâ€Coupled Polymeric Carbon Nitride for Overall Water Splitting through a Oneâ€Photon Excitation<br>Pathway. Angewandte Chemie - International Edition, 2020, 59, 20919-20923.                                                            | 13.8 | 87        |
| 32 | Cul-BiOI/Cu film for enhanced photo-induced charge separation and visible-light antibacterial activity.<br>Applied Catalysis B: Environmental, 2018, 235, 238-245.                                                                            | 20.2 | 85        |
| 33 | A Longâ€Lived Mononuclear Cyclopentadienyl Ruthenium Complex Grafted onto Anatase<br>TiO <sub>2</sub> for Efficient CO <sub>2</sub> Photoreduction. Angewandte Chemie, 2016, 128,<br>8454-8458.                                               | 2.0  | 80        |
| 34 | Non-noble metal thickness-tunable Bi2MoO6 nanosheets for highly efficient visible-light-driven nitrobenzene reduction into aniline. Applied Catalysis B: Environmental, 2019, 259, 118087.                                                    | 20.2 | 80        |
| 35 | Openmouthed β-SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O.<br>Applied Catalysis B: Environmental, 2017, 206, 158-167.                                                                                 | 20.2 | 79        |
| 36 | Synthesis of caged iodine-modified ZnO nanomaterials and study on their visible light photocatalytic antibacterial properties. Applied Catalysis B: Environmental, 2019, 256, 117873.                                                         | 20.2 | 79        |

| #  | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | La <sub>2</sub> Sn <sub>2</sub> O <sub>7</sub> enhanced photocatalytic CO <sub>2</sub> reduction with H <sub>2</sub> O by deposition of Au co-catalyst. RSC Advances, 2017, 7, 14186-14191.                                                                                                         | 3.6  | 77        |
| 38 | Highâ€Rate, Tunable Syngas Production with Artificial Photosynthetic Cells. Angewandte Chemie -<br>International Edition, 2019, 58, 7718-7722.                                                                                                                                                      | 13.8 | 75        |
| 39 | A direct Z-scheme α-Fe2O3/LaTiO2N visible-light photocatalyst for enhanced CO2 reduction activity.<br>Applied Catalysis B: Environmental, 2021, 292, 120185.                                                                                                                                        | 20.2 | 73        |
| 40 | Roomâ€Temperature Activation of H <sub>2</sub> by a Surface Frustrated Lewis Pair. Angewandte Chemie<br>- International Edition, 2019, 58, 9501-9505.                                                                                                                                               | 13.8 | 72        |
| 41 | Robust Photocatalytic H2O2 Production by Octahedral Cd3(C3N3S3)2 Coordination Polymer under Visible Light. Scientific Reports, 2015, 5, 16947.                                                                                                                                                      | 3.3  | 71        |
| 42 | Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N<br>co-doped TiO <sub>2</sub> . Physical Chemistry Chemical Physics, 2016, 18, 9636-9644.                                                                                                           | 2.8  | 68        |
| 43 | Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10232-10237.                                                                                         | 7.1  | 63        |
| 44 | lodine-modified nanocrystalline titania for photo-catalytic antibacterial application under visible<br>light illumination. Applied Catalysis B: Environmental, 2015, 176-177, 36-43.                                                                                                                | 20.2 | 62        |
| 45 | Accelerating charge transfer for highly efficient visible-light-driven photocatalytic H2 production:<br>In-situ constructing Schottky junction via anchoring Ni-P alloy onto defect-rich ZnS. Applied Catalysis<br>B: Environmental, 2020, 269, 118806.                                             | 20.2 | 62        |
| 46 | Synthesis and photocatalytic hydrogen production of a novel photocatalyst LaCO3OH. Journal of Materials Chemistry A, 2013, 1, 6629.                                                                                                                                                                 | 10.3 | 61        |
| 47 | Simultaneous enhancements in photoactivity and anti-photocorrosion of Z-scheme<br>Mn0.25Cd0.75S/WO3 for solar water splitting. Applied Catalysis B: Environmental, 2020, 268, 118444.                                                                                                               | 20.2 | 60        |
| 48 | Noble-metal-free Ni <sub>3</sub> N/g-C <sub>3</sub> N <sub>4</sub> photocatalysts with enhanced hydrogen production under visible light irradiation. Dalton Transactions, 2018, 47, 12188-12196.                                                                                                    | 3.3  | 59        |
| 49 | Heterojunction: important strategy for constructing composite photocatalysts. Science Bulletin, 2017, 62, 599-601.                                                                                                                                                                                  | 9.0  | 57        |
| 50 | An amorphous CoS <sub>x</sub> modified Mn <sub>0.5</sub> Cd <sub>0.5</sub> S solid solution with<br>enhanced visible-light photocatalytic H <sub>2</sub> -production activity. Catalysis Science and<br>Technology, 2018, 8, 4122-4128.                                                             | 4.1  | 57        |
| 51 | Self-assembly synthesis of LaPO4 hierarchical hollow spheres with enhanced photocatalytic CO2-reduction performance. Nano Research, 2017, 10, 534-545.                                                                                                                                              | 10.4 | 56        |
| 52 | <i>In situ</i> hydrothermal etching fabrication of CaTiO <sub>3</sub> on TiO <sub>2</sub> nanosheets<br>with heterojunction effects to enhance CO <sub>2</sub> adsorption and photocatalytic reduction.<br>Catalysis Science and Technology, 2019, 9, 336-346.                                      | 4.1  | 56        |
| 53 | BiOBr/Bi2S3 heterojunction with S-scheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO2 with H2O. Journal of Colloid and Interface Science, 2022, 620, 407-418.                                                                                 | 9.4  | 56        |
| 54 | A heterostructured TiO <sub>2</sub> –C <sub>3</sub> N <sub>4</sub> support for gold catalysts: a superior preferential oxidation of CO in the presence of H <sub>2</sub> under visible light irradiation and without visible light irradiation. Catalysis Science and Technology, 2016, 6, 829-839. | 4.1  | 50        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Zn defect-mediated Z-scheme electron-hole separation in AgIn5S8/ZnS heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Applied Surface Science, 2020, 504, 144396.                                                     | 6.1  | 48        |
| 56 | Freestanding single layers of non-layered material γ-Ga <sub>2</sub> O <sub>3</sub> as an efficient photocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 9702-9708.                                             | 10.3 | 46        |
| 57 | Ultrasmall NiS decorated HNb3O8 nanosheeets as highly efficient photocatalyst for H2 evolution reaction. Catalysis Today, 2019, 330, 195-202.                                                                                                    | 4.4  | 46        |
| 58 | Visible light-driven decomposition of gaseous benzene on robust Sn <sup>2+</sup> -doped anatase<br>TiO <sub>2</sub> nanoparticles. RSC Advances, 2014, 4, 34315-34324.                                                                           | 3.6  | 44        |
| 59 | Photocatalytic reduction of CO2 to CO over the Ti–Highly dispersed HZSM-5 zeolite containing Fe.<br>Applied Catalysis B: Environmental, 2017, 203, 725-730.                                                                                      | 20.2 | 44        |
| 60 | Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100(Fe) for the degradation of pharmaceuticals and personal care products under visible light. Nano Research, 2018, 11, 1109-1123.                  | 10.4 | 44        |
| 61 | Reconstructing Dualâ€Induced {0 0 1} Facets Bismuth Oxychloride Nanosheets Heterostructures: An<br>Effective Strategy to Promote Photocatalytic Oxygen Evolution. Solar Rrl, 2019, 3, 1900059.                                                   | 5.8  | 44        |
| 62 | Compact carbon nitride based copolymer films with controllable thickness for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2017, 5, 19062-19071.                                                                       | 10.3 | 43        |
| 63 | Photochemical route for synthesizing Co–P alloy decorated ZnIn <sub>2</sub> S <sub>4</sub> with<br>enhanced photocatalytic H <sub>2</sub> production activity under visible light irradiation.<br>Nanoscale, 2018, 10, 19100-19106.              | 5.6  | 41        |
| 64 | Phase Transition of Two-Dimensional β-Ga <sub>2</sub> O <sub>3</sub> Nanosheets from Ultrathin<br>γ-Ga <sub>2</sub> O <sub>3</sub> Nanosheets and Their Photocatalytic Hydrogen Evolution Activities.<br>ACS Omega, 2018, 3, 14469-14476.        | 3.5  | 40        |
| 65 | Simultaneous excitation of PdCl2 hybrid mesoporous g-C3N4 molecular/solid-state photocatalysts for enhancing the visible-light-induced oxidative removal of nitrogen oxides. Applied Catalysis B: Environmental, 2016, 184, 174-181.             | 20.2 | 39        |
| 66 | Construction of a 2D/2D WO <sub>3</sub> /LaTiO <sub>2</sub> N Direct Z-Scheme Photocatalyst for<br>Enhanced CO <sub>2</sub> Reduction Performance Under Visible Light. ACS Sustainable Chemistry and<br>Engineering, 2021, 9, 13686-13694.       | 6.7  | 39        |
| 67 | Efficient self-assembly synthesis of LaPO4/CdS hierarchical heterostructure with enhanced visible-light photocatalytic CO2 reduction. Applied Surface Science, 2020, 504, 144379.                                                                | 6.1  | 38        |
| 68 | A Template-Free Solution Route for the Synthesis of Well-Formed One-Dimensional Zn2GeO4<br>Nanocrystals and Its Photocatalytic Behavior. Inorganic Chemistry, 2013, 52, 6916-6922.                                                               | 4.0  | 37        |
| 69 | More efficiently enhancing photocatalytic activity by embedding Pt within anatase–rutile TiO2<br>heterophase junction than exposing Pt on the outside surface. Journal of Catalysis, 2019, 372, 8-18.                                            | 6.2  | 37        |
| 70 | Distortion of the Coordination Structure and High Symmetry of the Crystal Structure in In <sub>4</sub> SnS <sub>8</sub> Microflowers for Enhancing Visible-Light Photocatalytic CO <sub>2</sub> Reduction. ACS Catalysis, 2021, 11, 11029-11039. | 11.2 | 37        |
| 71 | Heteroatomic Ni, Sn Clusters-Grafted Anatase TiO <sub>2</sub> Photocatalysts: Structure, Electron<br>Delocalization, and Synergy for Solar Hydrogen Production. Journal of Physical Chemistry C, 2015, 119,<br>10478-10492.                      | 3.1  | 35        |
| 72 | Enhanced Photocatalytic Fuel Denitrification over TiO2/α-Fe2O3 Nanocomposites under Visible Light<br>Irradiation. Scientific Reports, 2017, 7, 7858.                                                                                             | 3.3  | 34        |

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | HZSM-5 zeolites containing impurity iron species for the photocatalytic reduction of CO <sub>2</sub><br>with H <sub>2</sub> O. Catalysis Science and Technology, 2016, 6, 7579-7585.                                                                                         | 4.1  | 33        |
| 74 | Electricâ€Fieldâ€Mediated Electron Tunneling of Supramolecular Naphthalimide Nanostructures for<br>Biomimetic H <sub>2</sub> Production. Angewandte Chemie - International Edition, 2021, 60, 1235-1243.                                                                     | 13.8 | 33        |
| 75 | Ni(OH)2 modified Mn0.5Cd0.5S with efficient photocatalytic H2 evolution activity under visible-light.<br>International Journal of Hydrogen Energy, 2020, 45, 21532-21539.                                                                                                    | 7.1  | 32        |
| 76 | Monolayer Bi <sub>2</sub> W <sub>1–<i>x</i></sub> Mo <i><sub>x</sub></i> O <sub>6</sub> Solid<br>Solutions for Structural Polarity to Boost Photocatalytic Reduction of Nitrobenzene under Visible<br>Light. ACS Sustainable Chemistry and Engineering, 2021, 9, 2465-2474.  | 6.7  | 32        |
| 77 | Oxygen vacancy modulation of two-dimensional γ-Ga <sub>2</sub> O <sub>3</sub> nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale, 2018, 10, 21509-21517.                                                                                     | 5.6  | 31        |
| 78 | Hot Ï€â€Electron Tunneling of Metal–Insulator–COF Nanostructures for Efficient Hydrogen<br>Production. Angewandte Chemie, 2019, 131, 18458-18462.                                                                                                                            | 2.0  | 31        |
| 79 | Germanium and iron double-substituted ZnGa2O4 solid-solution photocatalysts with modulated band structure for boosting photocatalytic CO2 reduction with H2O. Applied Catalysis B: Environmental, 2020, 265, 118551.                                                         | 20.2 | 31        |
| 80 | A novel Zn2GeO4 superstructure for effective photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2013, 1, 7798.                                                                                                                                            | 10.3 | 29        |
| 81 | Engineering a highly dispersed co-catalyst on a few-layered catalyst for efficient photocatalytic<br>H <sub>2</sub> evolution: a case study of Ni(OH) <sub>2</sub> /HNb <sub>3</sub> O <sub>8</sub><br>nanocomposites. Catalysis Science and Technology, 2017, 7, 5662-5669. | 4.1  | 29        |
| 82 | Metallic Pt and PtO <sub>2</sub> Dual-Cocatalyst-Loaded Binary Composite<br>RGO-CN <i><sub>x</sub></i> for the Photocatalytic Production of Hydrogen and Hydrogen Peroxide.<br>ACS Sustainable Chemistry and Engineering, 2021, 9, 6380-6389.                                | 6.7  | 29        |
| 83 | Molecular p–n heterojunction-enhanced visible-light hydrogen evolution over a N-doped<br>TiO <sub>2</sub> photocatalyst. Catalysis Science and Technology, 2017, 7, 2039-2049.                                                                                               | 4.1  | 27        |
| 84 | Graphitic carbon/carbon nitride hybrid as metal-free photocatalyst for enhancing hydrogen evolution. Applied Catalysis A: General, 2017, 546, 30-35.                                                                                                                         | 4.3  | 27        |
| 85 | Cobalt lactate complex as a hole cocatalyst for significantly enhanced photocatalytic H <sub>2</sub><br>production activity over CdS nanorods. Catalysis Science and Technology, 2018, 8, 1599-1605.                                                                         | 4.1  | 27        |
| 86 | Self-assembled micro/nano-structured Zn2GeO4 hollow spheres: direct synthesis and enhanced photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 10622.                                                                                                        | 10.3 | 26        |
| 87 | I-TiO2/PVC film with highly photocatalytic antibacterial activity under visible light. Colloids and Surfaces B: Biointerfaces, 2016, 144, 196-202.                                                                                                                           | 5.0  | 26        |
| 88 | Molecular Engineering of Fully Conjugated sp <sup>2</sup> Carbonâ€Linked Polymers for Highâ€Efficiency<br>Photocatalytic Hydrogen Evolution. ChemSusChem, 2020, 13, 672-676.                                                                                                 | 6.8  | 26        |
| 89 | Binuclear μ-hydroxo-bridged iron clusters derived from surface organometallic chemistry of<br>ferrocene in cavities of HY zeolite: Local structure, bound sites, and catalytic reactivity. Journal of<br>Catalysis, 2009, 264, 163-174.                                      | 6.2  | 23        |
| 90 | Germanium-substituted Zn2TiO4 solid solution photocatalyst for conversion of CO2 into fuels.<br>Journal of Catalysis, 2019, 371, 144-152.                                                                                                                                    | 6.2  | 23        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Polyvinyl pyrrolidone-coordinated ultrathin bismuth oxybromide nanosheets for boosting photoreduction of carbon dioxide via ligand-to-metal charge transfer. Journal of Colloid and Interface Science, 2022, 606, 1087-1100.                       | 9.4  | 23        |
| 92  | <i>In situ</i> growth of crystalline carbon nitride on LaOCl for photocatalytic overall water splitting. Journal of Materials Chemistry A, 2022, 10, 8252-8257.                                                                                    | 10.3 | 23        |
| 93  | Enhanced photocatalytic CO <sub>2</sub> conversion over LaPO <sub>4</sub> by introduction of CoCl <sub>2</sub> as a hole mediator. RSC Advances, 2016, 6, 34744-34747.                                                                             | 3.6  | 22        |
| 94  | New Versatile Synthetic Route for the Preparation of Metal Phosphate Decorated Hydrogen Evolution<br>Photocatalysts. Inorganic Chemistry, 2020, 59, 1566-1575.                                                                                     | 4.0  | 22        |
| 95  | One-step synthesis of mesoporous Pt–Nb <sub>2</sub> O <sub>5</sub> nanocomposites with enhanced photocatalytic hydrogen production activity. RSC Advances, 2016, 6, 96809-96815.                                                                   | 3.6  | 20        |
| 96  | Potassium doped and nitrogen defect modified graphitic carbon nitride for boosted photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 14044-14052.                                                             | 7.1  | 20        |
| 97  | Visible light photocatalytic H2-production activity of epitaxial Cu2ZnSnS4/ZnS heterojunction.<br>Catalysis Communications, 2016, 85, 39-43.                                                                                                       | 3.3  | 18        |
| 98  | Large-scale preparation of heterometallic chalcogenide MnSb <sub>2</sub> S <sub>4</sub> monolayer<br>nanosheets with a high visible-light photocatalytic activity for H <sub>2</sub> evolution. Chemical<br>Communications, 2016, 52, 13381-13384. | 4.1  | 18        |
| 99  | Roomâ€Temperature Activation of H <sub>2</sub> by a Surface Frustrated Lewis Pair. Angewandte<br>Chemie, 2019, 131, 9601-9605.                                                                                                                     | 2.0  | 18        |
| 100 | Regulation of the rutile/anatase TiO <sub>2</sub> heterophase interface by<br>Ni <sub>12</sub> P <sub>5</sub> to improve photocatalytic hydrogen evolution. Catalysis Science and<br>Technology, 2020, 10, 3709-3719.                              | 4.1  | 18        |
| 101 | <i>In situ</i> photodeposition of amorphous Ni <sub>x</sub> P on CdS nanorods for efficient<br>visible-light photocatalytic H <sub>2</sub> generation. Catalysis Science and Technology, 2019, 9,<br>5394-5400.                                    | 4.1  | 17        |
| 102 | Simple Fabrication of SnO <sub>2</sub> Quantumâ€dotâ€modified TiO <sub>2</sub> Nanorod Arrays with<br>High Photoelectrocatalytic Activity for Overall Water Splitting. ChemPhysChem, 2018, 19, 2717-2723.                                          | 2.1  | 16        |
| 103 | In situ construction of a heterojunction over the surface of a sandwich structure semiconductor<br>for highly efficient photocatalytic H <sub>2</sub> evolution under visible light irradiation.<br>Nanoscale, 2017, 9, 14423-14430.               | 5.6  | 15        |
| 104 | Enhanced visible light photocatalytic H2 evolution over CeO2 loaded with Pt and CdS. Research on Chemical Intermediates, 2017, 43, 5103-5112.                                                                                                      | 2.7  | 15        |
| 105 | One-step green conversion of benzyl bromide to aldehydes on NaOH-modified<br>g-C <sub>3</sub> N <sub>4</sub> with dioxygen under LED visible light. Catalysis Science and<br>Technology, 2019, 9, 3270-3278.                                       | 4.1  | 15        |
| 106 | CuxO modified La2Sn2O7 photocatalyst with enhanced photocatalytic CO2 reduction activity. Applied Surface Science, 2021, 568, 150985.                                                                                                              | 6.1  | 15        |
| 107 | Photo-Fenton enhanced twin-reactor for simultaneously hydrogen separation and organic wastewater degradation. Applied Catalysis B: Environmental, 2021, 281, 119517.                                                                               | 20.2 | 14        |
| 108 | Fabrication of 2H/3C-SiC heterophase junction nanocages for enhancing photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 622, 31-39.                                                                                    | 9.4  | 14        |

| #   | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Hot electrons in carbon nitride with ultralong lifetime and their application in reversible dynamic color displays. Cell Reports Physical Science, 2021, 2, 100516.                                                                                                       | 5.6  | 13        |
| 110 | Cooperative hydrogen production and Câ^C coupling organic synthesis in one photoredox cycle.<br>Applied Catalysis B: Environmental, 2022, 302, 120812.                                                                                                                    | 20.2 | 13        |
| 111 | Highâ€Rate, Tunable Syngas Production with Artificial Photosynthetic Cells. Angewandte Chemie, 2019, 131, 7800-7804.                                                                                                                                                      | 2.0  | 12        |
| 112 | Enhanced bacterial disinfection by Cul–BiOl/rGO hydrogel under visible light irradiation. RSC<br>Advances, 2021, 11, 20446-20456.                                                                                                                                         | 3.6  | 11        |
| 113 | The effect of excitation wavelength on the photodeposition of Pt on polyhedron BiVO4 with exposing<br>{010} and {110} facets for photocatalytic performance. Catalysis Communications, 2019, 123, 100-104.                                                                | 3.3  | 10        |
| 114 | LaOClâ€Coupled Polymeric Carbon Nitride for Overall Water Splitting through a Oneâ€Photon Excitation<br>Pathway. Angewandte Chemie, 2020, 132, 21105-21109.                                                                                                               | 2.0  | 10        |
| 115 | In situ $\hat{l}\pm$ -Fe2O3 modified La2Ti2O7 with enhanced photocatalytic CO2 reduction activity. Catalysis Science and Technology, 0, , .                                                                                                                               | 4.1  | 9         |
| 116 | Construction of the Rutile/Anatase Micro-Heterophase Junction Photocatalyst from Anatase by Liquid<br>Nitrogen Quenching Method. ACS Applied Energy Materials, 2021, 4, 10172-10186.                                                                                      | 5.1  | 9         |
| 117 | Photocatalytic Chlorination of Methane Using Alkali Chloride Solution. ACS Catalysis, 2022, 12, 7004-7013.                                                                                                                                                                | 11.2 | 9         |
| 118 | Sn <sup>2+</sup> and Cu <sup>2+</sup> Self-Codoped Cu <sub>2</sub> ZnSnS <sub>4</sub> Nanosheets<br>Switching from p-Type to n-Type Semiconductors for Visible-Light-Driven CO <sub>2</sub> Reduction.<br>ACS Sustainable Chemistry and Engineering, 2022, 10, 8825-8834. | 6.7  | 9         |
| 119 | Interim Anatase Coating Layer Stabilizes Rutile@Cr <sub><i>x</i></sub> O <sub><i>y</i></sub><br>Photoanode for Visibleâ€Lightâ€Driven Water Oxidation. ChemPhysChem, 2015, 16, 1352-1355.                                                                                 | 2.1  | 8         |
| 120 | Multimetal tantalate CsBi2Ta5O16 for photocatalytic conversion of CO2 with H2O into CH4 and O2.<br>Applied Surface Science, 2022, 588, 152933.                                                                                                                            | 6.1  | 8         |
| 121 | Post-synthetic regulation of the structure, morphology and photoactivity of graphitic carbon nitride by heat-vacuum treatment. Materials and Design, 2017, 114, 208-213.                                                                                                  | 7.0  | 7         |
| 122 | Electricâ€Fieldâ€Mediated Electron Tunneling of Supramolecular Naphthalimide Nanostructures for<br>Biomimetic H 2 Production. Angewandte Chemie, 2021, 133, 1255-1263.                                                                                                    | 2.0  | 6         |
| 123 | Super-hydrophobic and photocatalytic antimicrobial activity of iodine-doped ZnO nanoarray films.<br>New Journal of Chemistry, 2022, 46, 3140-3145.                                                                                                                        | 2.8  | 6         |
| 124 | Photochemistry of Nitrate Ion: Reduction by Formic Acid under UV Irradiation. Photochemistry and Photobiology, 2022, 98, 404-411.                                                                                                                                         | 2.5  | 2         |