List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8725843/publications.pdf Version: 2024-02-01

FEDNANDO REV

#	Article	IF	CITATIONS
1	Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature, 1995, 378, 159-162.	13.7	1,226
2	A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418, 514-517.	13.7	527
3	Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 2004, 431, 287-290.	13.7	522
4	Metal–Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Use as Sensors. Angewandte Chemie - International Edition, 2008, 47, 1080-1083.	7.2	378
5	A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Selfâ€Assembled Europium(III) Metal–Organic Framework. Angewandte Chemie - International Edition, 2009, 48, 6476-6479.	7.2	314
6	Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 2017, 358, 1068-1071.	6.0	304
7	Towards the Rational Design of Efficient Organic Structureâ€Directing Agents for Zeolite Synthesis. Angewandte Chemie - International Edition, 2013, 52, 13880-13889.	7.2	290
8	Determination of base properties of hydrotalcites: Condensation of benzaldehyde with ethyl acetoacetate. Journal of Catalysis, 1992, 134, 58-65.	3.1	282
9	Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2233-2238.	1.7	274
10	Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism. Angewandte Chemie - International Edition, 2001, 40, 2277-2280.	7.2	270
11	A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2003, 2, 493-497.	13.3	252
12	New Insights on CO ₂ â^'Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 2010, 26, 1910-1917.	1.6	244
13	Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. Journal of Physical Chemistry B, 2002, 106, 2634-2642.	1.2	228
14	ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chemical Communications, 2004, , 1356-1357.	2.2	220
15	Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. Journal of Catalysis, 2001, 203, 443-452.	3.1	211
16	Synthesis of MCM-41 with Different Pore Diameters without Addition of Auxiliary Organics. Chemistry of Materials, 1997, 9, 2123-2126.	3.2	208
17	Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41. Chemical Communications, 1998, , 2211-2212.	2.2	197
18	Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. Journal of the American Chemical Society, 2003, 125, 7820-7821.	6.6	190

#	Article	IF	CITATIONS
19	Methane hydrate formation in confined nanospace can surpass nature. Nature Communications, 2015, 6, 6432.	5.8	187
20	Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nature Chemistry, 2012, 4, 188-194.	6.6	178
21	Hydrotalcites as Base Catalysts: Influence of the Chemical Composition and Synthesis Conditions on the Dehydrogenation of Isopropanol. Journal of Catalysis, 1994, 148, 205-212.	3.1	172
22	Structure–functionality relationships of grafted Ti-MCM41 silicas. Spectroscopic and catalytic studies. Physical Chemistry Chemical Physics, 1999, 1, 585-592.	1.3	170
23	Multifunctional Luminescent and Proton-Conducting Lanthanide Carboxyphosphonate Open-Framework Hybrids Exhibiting Crystalline-to-Amorphous-to-Crystalline Transformations. Chemistry of Materials, 2012, 24, 3780-3792.	3.2	162
24	Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. Journal of Catalysis, 2014, 312, 46-57.	3.1	157
25	Zeolite Rho: a highly selective adsorbent for CO ₂ /CH ₄ separation induced by a structural phase modification. Chemical Communications, 2012, 48, 215-217.	2.2	143
26	A Zeolite Structure (ITQ-13) with Three Sets of Medium-Pore Crossing Channels Formed by9- and 10-Rings. Angewandte Chemie - International Edition, 2003, 42, 1156-1159.	7.2	141
27	Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study. Angewandte Chemie - International Edition, 2002, 41, 4722-4726.	7.2	137
28	Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 2010, 330, 1219-1222.	6.0	136
29	Spin-Crossover Modification through Selective CO ₂ Sorption. Journal of the American Chemical Society, 2013, 135, 15986-15989.	6.6	129
30	High Proton Conductivity in a Flexible, Cross-Linked, Ultramicroporous Magnesium Tetraphosphonate Hybrid Framework. Inorganic Chemistry, 2012, 51, 7689-7698.	1.9	118
31	Desilication of highly siliceous zeolite ZSM-5 with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 2013, 168, 195-205.	2.2	118
32	Using the "memory effect―of hydrotalcites for improving the catalytic reduction of nitrates in water. Journal of Catalysis, 2004, 221, 62-66.	3.1	117
33	A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 2008, 130, 16482-16483.	6.6	114
34	V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase. Applied Catalysis A: General, 2001, 209, 155-164.	2.2	112
35	P-Derived Organic Cations as Structure-Directing Agents:Â Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 2006, 128, 8862-8867.	6.6	110
36	Simultaneous Catalytic Removal of SOxand NOxwith Hydrotalcite-Derived Mixed Oxides Containing Copper, and Their Possibilities to Be Used in FCC Units. Journal of Catalysis, 1997, 170, 140-149.	3.1	109

#	Article	IF	CITATIONS
37	Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 2002, 14, 71-74.	11.1	109
38	MCM-41–Quaternary organic tetraalkylammonium hydroxide composites as strong and stable BrÃ,nsted base catalysts. Chemical Communications, 1999, , 593-594.	2.2	103
39	Paving the way for methane hydrate formation on metal–organic frameworks (MOFs). Chemical Science, 2016, 7, 3658-3666.	3.7	103
40	Mesoporous Materials as Catalysts for the Production of Chemicals: Synthesis of Alkyl Glucosides on MCM-41. Journal of Catalysis, 1999, 183, 76-82.	3.1	100
41	Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides. Chemical Communications, 1999, , 779-780.	2.2	97
42	Extraction of extra-framework aluminium in ultrastable Y zeolites by (NH4)2SiF6 treatments. Applied Catalysis, 1990, 59, 267-274.	1.1	96
43	Cation Gating and Relocation during the Highly Selective "Trapdoor―Adsorption of CO ₂ on Univalent Cation Forms of Zeolite Rho. Chemistry of Materials, 2014, 26, 2052-2061.	3.2	96
44	One step synthesis of highly active and selective epoxidation catalysts formed by organic–inorganic Ti containing mesoporous composites. Chemical Communications, 1998, , 1899-1900.	2.2	93
45	Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta. Angewandte Chemie - International Edition, 2006, 45, 8013-8015.	7.2	93
46	A New Aluminosilicate Molecular Sieve with a System of Pores between Those of ZSM-5 and Beta Zeolite. Journal of the American Chemical Society, 2011, 133, 9497-9505.	6.6	86
47	Elucidating the local environment of Ti(IV) active sites in Ti-MCM-48: a comparison between silylated and calcined catalysts. Microporous and Mesoporous Materials, 2001, 44-45, 345-356.	2.2	85
48	Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chemical Communications, 2007, , 1233-1235.	2.2	85
49	Crystal Structure of ITQ-26, a 3D Framework with Extra-Large Pores. Chemistry of Materials, 2008, 20, 5325-5331.	3.2	85
50	Catalytic Air Oxidation of Thiols Mediated at a Mo(VI)O2 Complex Center Intercalated in a Zn(II)-Al(III) Layered Double Hydroxide Host. Journal of Catalysis, 1995, 152, 237-242.	3.1	83
51	Synthesis of pure polymorph C of Beta zeolite in a fluoride-free system. Chemical Communications, 2001, , 1486-1487.	2.2	83
52	One-step synthesis of citronitril on hydrotalcite derived base catalysts. Applied Catalysis A: General, 1994, 114, 215-225.	2.2	80
53	Computational and Experimental Approach to the Role of Structure-Directing Agents in the Synthesis of Zeolites: The Case of Cyclohexyl Alkyl Pyrrolidinium Salts in the Synthesis of β, EU-1, ZSM-11, and ZSM-12 Zeolites. Journal of Physical Chemistry B, 2003, 107, 5432-5440.	1.2	80
54	Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 2000, 194-195, 241-252.	2.2	79

#	Article	IF	CITATIONS
55	Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 2016, 138, 10116-10119.	6.6	78
56	Solvent-Free Synthesis of ZIFs: A Route toward the Elusive Fe(II) Analogue of ZIF-8. Journal of the American Chemical Society, 2019, 141, 7173-7180.	6.6	76
57	Synthesis Design and Structure of a Multipore Zeolite with Interconnected 12- and 10-MR Channels. Journal of the American Chemical Society, 2012, 134, 6473-6478.	6.6	75
58	Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5. Journal of Catalysis, 2016, 339, 256-269.	3.1	75
59	Synthesis and Structure of the Bidimensional Zeolite ITQ-32 with Small and Large Pores. Journal of the American Chemical Society, 2005, 127, 11560-11561.	6.6	72
60	Distribution of Fluorine and Germanium in a New Zeolite Structure ITQ-13 Studied by19F Nuclear Magnetic Resonance. Chemistry of Materials, 2003, 15, 3961-3963.	3.2	71
61	Synchrotron-Based Method for the Study of Crystallization: Templated Formation of CoALPO-5 Catalyst. Chemistry of Materials, 1995, 7, 1435-1436.	3.2	68
62	Intercalation of [MoVIO2(O2CC(S)Ph2)2]2- in a Zn(II)-Al(III) Layered Double Hydroxide Host: A Strategy for the Heterogeneous Catalysis of the Air Oxidation of Thiols. Journal of the American Chemical Society, 1994, 116, 1595-1596.	6.6	67
63	Probing active sites in solid catalysts for the liquid-phase epoxidation of alkenes. Journal of the Chemical Society Chemical Communications, 1994, , 2279.	2.0	67
64	Synthesis and characterisation by X-ray absorption spectroscopy of a suite of seven mesoporous catalysts containing metal ions in framework sites. Topics in Catalysis, 1996, 3, 121-134.	1.3	65
65	Pyrene covalently anchored on a large external surface area zeolite as a selective heterogeneous sensor for iodide. Chemical Communications, 2002, , 1100-1101.	2.2	65
66	Cobalt Metal–Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media. Journal of the American Chemical Society, 2020, 142, 19198-19208.	6.6	64
67	A New United Atom Force Field for Adsorption of Alkenes in Zeolites. Journal of Physical Chemistry C, 2008, 112, 2492-2498.	1.5	62
68	Synthesis, Characterization, and Framework Heteroatom Localization in ITQ-21. Journal of the American Chemical Society, 2004, 126, 13414-13423.	6.6	61
69	Synthesis and Structure Determination of a New Microporous Zeolite with Large Cavities Connected by Small Pores. Journal of the American Chemical Society, 2012, 134, 13232-13235.	6.6	58
70	A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores. Journal of the American Chemical Society, 2014, 136, 3342-3345.	6.6	58
71	Probing the onset of crystallization of a microporous catalyst by combined X-ray absorption spectroscopy and X-ray diffraction. Journal of the Chemical Society Chemical Communications, 1995, , 2549.	2.0	57
72	Mesopore-modified mordenites as catalysts for catalytic pyrolysis of biomass and cracking of vacuum gasoil processes. Green Chemistry, 2013, 15, 1647.	4.6	56

#	Article	IF	CITATIONS
73	Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials. Chemical Communications, 2001, , 419-420.	2.2	54
74	Photochemical modification of the surface area and tortuosity of a trans-1,2-bis(4-pyridyl)ethylene periodic mesoporous MCM organosilica. Chemical Communications, 2002, , 2012-2013.	2.2	54
75	SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid. Materials Chemistry and Physics, 2019, 236, 121792.	2.0	54
76	Hydrotalcite-derived mixed oxides containing copper: catalysts for the removal of nitric oxide. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4331.	1.7	53
77	Tuning the Adsorption Properties of Zeolites as Adsorbents for CO ₂ Separation: Best Compromise between the Working Capacity and Selectivity. Industrial & Engineering Chemistry Research, 2014, 53, 9860-9874.	1.8	51
78	A highly stable and hierarchical tetrathiafulvalene-based metal–organic framework with improved performance as a solid catalyst. Chemical Science, 2018, 9, 2413-2418.	3.7	50
79	Optimization of SOx additives of FCC catalysts based on MgO-Al2O3 mixed oxides produced from hydrotalcites. Applied Catalysis B: Environmental, 1994, 4, 29-43.	10.8	48
80	Analysis of the ITQ-12 Zeolite Performance in Propaneâ^'Propylene Separations Using a Combination of Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2010, 114, 14907-14914.	1.5	47
81	The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 2015, 51, 7602-7605.	2.2	47
82	Synthesis of a Novel Zeolite through a Pressureâ€Induced Reconstructive Phase Transition Process. Angewandte Chemie - International Edition, 2013, 52, 10458-10462.	7.2	45
83	On the shape selective acylation of 2-methoxynaphthalene over polymorphÂC of Beta (ITQ-17). Journal of Catalysis, 2003, 217, 406-416.	3.1	43
84	Characterisation of the active copper species for the NOx removal on Cu/Mg/Al mixed oxides derived from hydrotalcites: an in situ XPS/XAES study. Journal of Materials Chemistry, 2001, 11, 1675-1680.	6.7	41
85	Synthesis of cubic mesoporous MCM-48 materials from the system SiO2:CTAOH/Br:H2O. Microporous and Mesoporous Materials, 2001, 44-45, 9-16.	2.2	41
86	Quinoline as a probe molecule for determination of external Brönsted and Lewis acidity in zeolites. Zeolites, 1993, 13, 56-59.	0.9	40
87	Cobalt Metal–Organic Framework Based on Two Dinuclear Secondary Building Units for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 46658-46665.	4.0	40
88	A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 2005, 15, 1742.	6.7	39
89	Ultra fast and efficient synthesis of Ti-ITQ-7 and positive catalytic implications. Chemical Communications, 2000, , 1725-1726.	2.2	38
90	Observation of a 390-nm Emission Band Associated with Framework Ti in Mesoporous Titanosilicates. Chemistry of Materials, 2000, 12, 3068-3072.	3.2	38

#	Article	IF	CITATIONS
91	An NMR study on the adsorption and reactivity of chloroform over alkali exchanged zeolites X and Y. Physical Chemistry Chemical Physics, 1999, 1, 4529-4535.	1.3	36
92	Transformation of layered aluminosilicates and gallosilicates with kanemite structure into mesoporous materials. Journal of Materials Chemistry, 2000, 10, 993-1000.	6.7	35
93	Synthesis and characterization of silica-alumina prepared from tetraalkylammonium hydroxides. Applied Catalysis, 1990, 63, 145-164.	1.1	34
94	Hierarchical Mordenite Dedicated to the Fluid Catalytic Cracking Process: Catalytic Performance Regarding Textural and Acidic Properties. Journal of Physical Chemistry C, 2014, 118, 28043-28054.	1.5	33
95	Model Reactions of Molybdo-Reductase. A Novel and Highly Efficient Reduction of Nitrobenzene to Aniline Catalyzed by a Molybdenum-Mediated Oxygen Atom Transfer Reaction. Journal of the American Chemical Society, 1995, 117, 6781-6782.	6.6	31
96	Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations. Applied Catalysis A: General, 2015, 507, 14-25.	2.2	31
97	The effect of extra framework species on the intrinsic negative thermal expansion property of zeolites with the LTA topology. Chemical Communications, 2012, 48, 5829.	2.2	30
98	Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity. ChemSusChem, 2017, 10, 2968-2977.	3.6	30
99	Ligand-Functionalization-Controlled Activity of Metal–Organic Framework-Encapsulated Pt Nanocatalyst toward Activation of Water. Nano Letters, 2020, 20, 426-432.	4.5	30
100	Bioethanol steam reforming on Ni-based modified mordenite. Effect of mesoporosity, acid sites and alkaline metals. International Journal of Hydrogen Energy, 2012, 37, 7101-7108.	3.8	28
101	Synthesis, characterisation and catalytic performance of the solid acid DAF-1. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3537.	1.7	27
102	Determination of Phase Composition of MCM-48/Lamellar Phase Mixtures Using Nitrogen Adsorption and Thermogravimetry. Chemistry of Materials, 2002, 14, 4434-4442.	3.2	26
103	Synthesis of ITQ-21 in OH– media. Chemical Communications, 2003, , 1050-1051.	2.2	26
104	Inelastic Neutron Scattering Study on the Location of BrÃุnsted Acid Sites in High Silica LTA Zeolite. Journal of Physical Chemistry C, 2016, 120, 24904-24909.	1.5	25
105	Thermochemistry of (GexSi1â^'x)O2 zeolites. Microporous and Mesoporous Materials, 2003, 59, 177-183.	2.2	24
106	Influence of silylation on the catalytic activity of Ti-MCM-41 during epoxidation of olefins Studies in Surface Science and Catalysis, 2000, , 169-178.	1.5	23
107	ITQ-16, a new zeolite family of the beta group with different proportions of polymorphs A, B and C. Chemical Communications, 2001, , 1720-1721.	2.2	23
108	Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. Microporous and Mesoporous Materials, 2017, 254, 69-76.	2.2	23

#	Article	IF	CITATIONS
109	Synthesis and structure determination <i>via</i> ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62. Chemical Communications, 2018, 54, 2122-2125.	2.2	23
110	Influence of post-synthetic modifications on the composition, acidity and textural properties of ZSM-22 zeolite. Catalysis Today, 2018, 299, 120-134.	2.2	23
111	Reactions of Tin(II) Fluoride with Halogens. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1989, 575, 202-208.	0.6	22
112	On the atomic environment and the mode of action of the catalytic centre in an intercalated oxo–molybdenum complex [MoO2{O2CC(S)Ph2}2]2–for oxygen-transfer reactions. Chemical Communications, 1996, , 1613-1614.	2.2	22
113	A new synthesis method for the preparation of ITQ-7 zeolites and the characterisation of the resulting materials. Comptes Rendus Chimie, 2005, 8, 369-378.	0.2	22
114	Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2adsorption. Physical Chemistry Chemical Physics, 2014, 16, 24391-24400.	1.3	22
115	Critical Role of Dynamic Flexibility in Ge ontaining Zeolites: Impact on Diffusion. Chemistry - A European Journal, 2016, 22, 10036-10043.	1.7	22
116	Correspondence: Strongly-driven Re+CO2 redox reaction at high-pressure and high-temperature. Nature Communications, 2016, 7, 13647.	5.8	21
117	An <i>in situ</i> XAS study of the activation of precursor-dependent Pd nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 12700-12709.	1.3	21
118	Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves. Frontiers in Chemistry, 2020, 8, 588712.	1.8	21
119	Structural Evolution of CO ₂ -Filled Pure Silica LTA Zeolite under High-Pressure High-Temperature Conditions. Chemistry of Materials, 2017, 29, 4502-4510.	3.2	20
120	Highâ€Performance of Gas Hydrates in Confined Nanospace for Reversible CH ₄ /CO ₂ Storage. Chemistry - A European Journal, 2016, 22, 10028-10035.	1.7	19
121	An Ultrahigh CO ₂ -Loaded Silicalite-1 Zeolite: Structural Stability and Physical Properties at High Pressures and Temperatures. Inorganic Chemistry, 2018, 57, 6447-6455.	1.9	19
122	Metastable solid solutions of alumina in magnesia. Journal of Physics and Chemistry of Solids, 1997, 58, 1619-1624.	1.9	18
123	Thermochemistry of (GexSi1â^'x)O2 zeolites. Microporous and Mesoporous Materials, 2003, 64, 127-133.	2.2	18
124	Enthalpies of formation of Ge-zeolites: ITQ-21 and ITQ-22. Microporous and Mesoporous Materials, 2004, 74, 87-92.	2.2	18
125	Intercalation of the oxo-transfer molybdenum(VI) complex [MoO2{O2CC(S) Ph2}2]2–into a zinc(II)–aluminium(III) layered double hydroxide host. Catalysis of the air oxidalton of thiols. Journal of the Chemical Society Dalton Transactions, 1994, , 2953-2957.	1.1	17
126	The First Study on the Reactivity of Water Vapor in Metal–Organic Frameworks with Platinum Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 11731-11736.	7.2	17

#	Article	IF	CITATIONS
127	Catalytic reduction of nitrates in natural water: is this a realistic objective?. Journal of Catalysis, 2004, 227, 561-562.	3.1	16
128	TNU-9, a new zeolite for the selective catalytic reduction of NO: An in situ X-ray absorption spectroscopy study. Journal of Catalysis, 2012, 295, 22-30.	3.1	16
129	Computational screening of structure directing agents for the synthesis of zeolites. A simplified model. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 451-460.	0.4	16
130	Gas confinement in compartmentalized coordination polymers for highly selective sorption. Chemical Science, 2017, 8, 3109-3120.	3.7	15
131	Highly active hybrid mesoporous silica-supported base organocatalysts for C C bond formation. Catalysis Today, 2020, 345, 227-236.	2.2	15
132	AgY zeolite as catalyst for the selective catalytic oxidation of NH3. Microporous and Mesoporous Materials, 2021, 323, 111230.	2.2	15
133	Structural study of pure silica and Ge-containing zeolite ITQ-24. Zeitschrift Für Kristallographie, Supplement, 2007, 2007, 393-398.	0.5	15
134	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	5.5	14
135	Influence of Superacid Sites in Ultrastable Y Zeolites on Gas Oil Cracking. ACS Symposium Series, 1991, , 12-26.	0.5	13
136	Zeolites and Other Adsorbents. Green Energy and Technology, 2019, , 173-208.	0.4	13
137	Silver exchanged zeolites as bactericidal additives in polymeric materials. Microporous and Mesoporous Materials, 2020, 305, 110367.	2.2	13
138	AgAu nanoclusters supported on zeolites: Structural dynamics during CO oxidation. Catalysis Today, 2022, 384-386, 166-176.	2.2	13
139	Insights into Adsorption of Linear, Monobranched, and Dibranched Alkanes on Pure Silica STW Zeolite as a Promising Material for Their Separation. Journal of Physical Chemistry C, 2020, 124, 26821-26829.	1.5	11
140	Zeolite-driven Ag species during redox treatments and catalytic implications for SCO of NH ₃ . Journal of Materials Chemistry A, 2021, 9, 27448-27458.	5.2	11
141	ITQ-39 zeolite, an efficient catalyst for the conversion of low value naphtha fractions into diesel fuel: The role of pore size on molecular diffusion and reactivity. Journal of Catalysis, 2016, 333, 127-138.	3.1	10
142	Functional Agâ€Exchanged Zeolites as Biocide Agents. ChemistrySelect, 2018, 3, 4676-4682.	0.7	10
143	Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction. Catalysis Today, 2020, 345, 22-26.	2.2	10
144	Unequivocal evidence of the presence of titanols in Ti-MCM-48 mesoporous materials. A combined diffuse reflectance UV-Vis-Nir and 29Si-MAS-NMR study. Research on Chemical Intermediates, 2004, 30, 871-877.	1.3	9

#	Article	IF	CITATIONS
145	Inelastic Neutron Scattering Study of the Aluminum and BrÃ,nsted Site Location in Aluminosilicate LTA Zeolites. Journal of Physical Chemistry C, 2018, 122, 11450-11454.	1.5	9
146	Host–Guest and Guest–Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 22324-22334.	1.5	9
147	Capturing renewable isobutanol from model vapor mixtures using an all-silica beta zeolite. Chemical Engineering Journal, 2021, 412, 128658.	6.6	9
148	The investigation of beta polymorphs by 19F nuclear magnetic resonance. Studies in Surface Science and Catalysis, 2004, 154, 1289-1294.	1.5	8
149	High-Resolution Transmission Electron Microscopy (HRTEM) and X-ray Diffraction (XRD) Study of the Intergrowth in Zeolites ITQ-13/ITQ-34. Journal of Physical Chemistry C, 2009, 113, 9305-9308.	1.5	8
150	Isostructural compartmentalized spin-crossover coordination polymers for gas confinement. Inorganic Chemistry Frontiers, 2016, 3, 808-813.	3.0	8
151	ITQâ€69: A Germaniumâ€Containing Zeolite and its Synthesis, Structure Determination, and Adsorption Properties. Angewandte Chemie - International Edition, 2021, 60, 11745-11750.	7.2	8
152	One-electron donor sites and their strength distribution on some hydrotalcite and MgO surfaces as studied by EPR spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 213-218.	1.7	7
153	Thermal analysis of large pore microporous zincophosphates. Thermochimica Acta, 2001, 376, 155-162.	1.2	7
154	Charge matching between the occluded organic cations and zeolite framework as structure directing effect in zeolite synthesis. Studies in Surface Science and Catalysis, 2008, 174, 249-252.	1.5	7
155	Adsorption of Alkanes in Zeolites LTA and FAU: Quasi-Equilibrated Thermodesorption Supported by Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 29665-29678.	1.5	7
156	Sustainable Production of Hydrogen by Steam Reforming of Ethanol Using Cobalt Supported on Nanoporous Zeolitic Material. Nanomaterials, 2020, 10, 1934.	1.9	7
157	Nature and evolution of Pd catalysts supported on activated carbon fibers during the catalytic reduction of bromate in water. Catalysis Science and Technology, 2020, 10, 3646-3653.	2.1	7
158	Evidence of Hydronium Formation in Water–Chabazite Zeolite Using Inelastic Neutron Scattering Experiments and ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2020, 124, 5436-5443.	1.5	7
159	The Influence of the Support Nature and the Metal Precursor in the Activity of Pdâ€based Catalysts for the Bromate Reduction Reaction. ChemCatChem, 2021, 13, 1230-1238.	1.8	7
160	Use of Alkylarsonium Directing Agents for the Synthesis and Study of Zeolites. Chemistry - A European Journal, 2019, 25, 16390-16396.	1.7	6
161	Versatile phosphorus-structure-directing agent for direct preparation of novel metallosilicate zeolites with IFW-topology. Microporous and Mesoporous Materials, 2021, 317, 111005.	2.2	6
162	Surface Properties of Mesoporous Ti-MCM-48 and their Modifications Produced by Silylation Studies in Surface Science and Catalysis, 2001, , 209-220.	1.5	5

#	Article	IF	CITATIONS
163	H-Beta zeolite for acylation processes: optimization of the catalyst properties and reaction conditions. Studies in Surface Science and Catalysis, 2002, 142, 651-658.	1.5	5
164	Zeolite ITQ-21 as catalyst for the alkylation of benzene with propylene. Studies in Surface Science and Catalysis, 2008, , 1087-1090.	1.5	5
165	One body, many heads; the Cerberus of catalysis. A new multipurpose in-situ cell for XAS at ALBA. Journal of Physics: Conference Series, 2013, 430, 012057.	0.3	5
166	An INS study of entrapped organic cations within the micropores of zeolite RTH. Physical Chemistry Chemical Physics, 2016, 18, 17244-17252.	1.3	5
167	Identification of New Templates for the Synthesis of BEA, BEC, and ISV Zeolites Using Molecular Topology and Monte Carlo Techniques. Journal of Chemical Information and Modeling, 2020, 60, 2819-2829.	2.5	5
168	The Use of Methacrolein in the Knoevenagel Reaction: A Synthesis of Tetrahydro-1-(3H)-Isobenzofuranones. Synthetic Communications, 1991, 21, 327-331.	1.1	4
169	A new synthesis route of the tridirectional 12 ring channel zeolite ITQ-7. Studies in Surface Science and Catalysis, 2004, , 481-488.	1.5	4
170	Multiscale exploration of hydrocarbon adsorption and hopping through ZSM-5 channels – from Monte Carlo modelling to experiment. Physical Chemistry Chemical Physics, 2021, 23, 2981-2990.	1.3	4
171	Bifunctional hybrid organosiliceous catalysts for aldol condensation – hydrogenation tandem reactions of furfural in continuous-flow reactor. Applied Catalysis A: General, 2022, 643, 118710.	2.2	4
172	Direct Synthesis of a Photoactive Inorganic–Organic Mesostructured Hybrid Material and its Application as a Photocatalyst. ChemPhysChem, 2009, 10, 1084-1089.	1.0	3
173	Arsenolite: a quasi-hydrostatic solid pressure-transmitting medium. Journal of Physics Condensed Matter, 2016, 28, 475403.	0.7	3
174	Beyond Nitrogen OSDAs. Structure and Bonding, 2017, , 103-138.	1.0	3
175	Gold nanoclusters supported on different materials as catalysts for the selective alkyne semihydrogenation. Catalysis Today, 2022, 394-396, 34-40.	2.2	3
176	An study of cyclohexylpyrrolidine-derived quaternary organic cations as structure directing agents for synthesis of zeolites. Studies in Surface Science and Catalysis, 2004, 154, 265-274.	1.5	2
177	A new photochemical based route for the preparation of organic structure directing agents useful for zeolite synthesis. Studies in Surface Science and Catalysis, 2007, 170, 330-337.	1.5	2
178	Wired metal–organic chalcogenides. Nature Materials, 2017, 16, 287-288.	13.3	2
179	Elucidation of the Interaction Mechanism between Organic Chiral Cages with Biomolecules through Nuclear Magnetic Resonance and Theoretical Studies. Journal of Physical Chemistry C, 2018, 122, 16821-16829.	1.5	2
180	Vanadium oxide supported on mesoporous Al2O3: Preparation, characterization and reactivity. Catalysis Today, 2004, 96, 179-186.	2.2	1

#	Article	IF	CITATIONS
181	The Spanish presence in the molecular sieve technology scenario. International Journal of Nanotechnology, 2005, 2, 144.	0.1	1
182	Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules. Catalysis Science and Technology, 2019, 9, 6308-6317.	2.1	1
183	ITQâ€69: A Germaniumâ€Containing Zeolite and its Synthesis, Structure Determination, and Adsorption Properties. Angewandte Chemie, 2021, 133, 11851-11856.	1.6	1
184	Distribution of Fluorine and Germanium in a New Zeolite Structure ITQ-13 Studied by19F Nuclear Magnetic Resonance ChemInform, 2004, 35, no.	0.1	0
185	Supramolecular Self-Assembled Molecules as Organic Directing Agent for Synthesis of Zeolites ChemInform, 2004, 35, no.	0.1	0
186	The Spanish Presence in the Molecular Sieve Technology Scenario. ChemInform, 2005, 36, no.	0.1	0
187	Structural study of pure silica and Gecontaining zeolite ITQ-24. , 2007, , 393-398.		0
188	Characterization of LTA- and CHA- type zeolites by means of solid state NMR. Studies in Surface Science and Catalysis, 2008, 174, 989-992.	1.5	0
189	A new metal exchanged zeolite for a present environmental problem. An in-situ XAS study. Journal of Physics: Conference Series, 2013, 430, 012055.	0.3	0
190	Optimised synthesis and characterisation of 1-adamantyltrimethylphosphonium iodide. Polyhedron, 2017, 133, 302-306.	1.0	0
191	Determination of very beam-sensitive zeolite ITQ-57 by energy-filtered Timepix data. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C64-C64.	0.0	0
192	Inelastic Neutron Scattering Study of BrÃ,nsted Acidity and Water Confinement in Zeolites. Proceedings (mdpi), 2019, 26, 47.	0.2	0
193	A Multi-Nuclear MAS-NMR Study on the Structural Properties of Silicalite-1 Zeolite Synthesized Using N- and P-Based Organic Structure Directing Agents. Applied Sciences (Switzerland), 2021, 11, 6850.	1.3	0
194	Structure determination by ultra-fast electron diffraction of the new zeolite ITQ-62. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e310-e310.	0.0	0