
Viktor A Keskinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8725617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solubility of Light Fullerenes in Organic Solvents. Journal of Chemical & Engineering Data, 2010, 55, 13-36.	1.0	186
2	Fullerenol Synthesis and Identification. Properties of the Fullerenol Water Solutions. Journal of Chemical & Engineering Data, 2011, 56, 230-239.	1.0	100
3	Physico-chemical properties of the C60-arginine water solutions. Journal of Molecular Liquids, 2015, 211, 301-307.	2.3	30
4	Physico-chemical and biological properties of C ₆₀ - <scp>l</scp> -hydroxyproline water solutions. RSC Advances, 2017, 7, 15189-15200.	1.7	30
5	Impact Resistance of Cement and Gypsum Plaster Nanomodified by Water-Soluble Fullerenols. Industrial & Engineering Chemistry Research, 2013, 52, 14583-14591.	1.8	29
6	Fullerenol- <i>d</i> Solubility in Fullerenol- <i>d</i> –Inorganic Salt–Water Ternary Systems at 25 °C. Industrial & Engineering Chemistry Research, 2013, 52, 16095-16100.	1.8	25
7	Physico-chemical properties of the water-soluble C70-tris-malonic solutions. Journal of Molecular Liquids, 2015, 211, 487-493.	2.3	22
8	Physico-chemical properties of the C 60 - l -lysine water solutions. Journal of Molecular Liquids, 2017, 225, 767-777.	2.3	20
9	Excess thermodynamic functions in aqueous systems containing soluble fullerene derivatives. Journal of Molecular Liquids, 2018, 256, 305-311.	2.3	17
10	Solubility of fullerenes in n-alkanoic acids C2–C9. Russian Journal of Applied Chemistry, 2007, 80, 456-460.	0.1	16
11	Synthesis and identification of fullerenol prepared by the direct oxidation route. Russian Journal of Applied Chemistry, 2010, 83, 2076-2080.	0.1	15
12	Polythermal solubility of fullerenes in higher isomeric carboxylic acids. Russian Journal of Applied Chemistry, 2007, 80, 38-41.	0.1	12
13	Solubility and some properties of aqueous solutions of fullerenol-d and composition of crystal hydrates. Russian Journal of Applied Chemistry, 2011, 84, 44-49.	0.1	11
14	Polythermal study of the solubility of fullerenes in pelargonic and caprylic acids. Russian Journal of Applied Chemistry, 2007, 80, 557-561.	0.1	10
15	The solubility of C70 in n-alkanols-1 C1-C11 over the temperature range 20–80°C. Russian Journal of Physical Chemistry A, 2008, 82, 753-757.	0.1	10
16	Extraction of uranyl nitrate with a binary extractant based on di(2,4,4-trimethylpentyl)phosphinic acid. Theoretical Foundations of Chemical Engineering, 2008, 42, 708-713.	0.2	10
17	The synthesis and identification of mixed fullerenol prepared by the direct one-stage oxidation of fullerene black. Russian Journal of Physical Chemistry A, 2011, 85, 1009-1015.	0.1	10
18	Extraction of fullerene mixture from fullerene soot with organic solvents. Russian Journal of General Chemistry, 2011, 81, 920-926.	0.3	9

VIKTOR A KESKINOV

#	Article	IF	CITATIONS
19	The solubility of fullerenes in butyric and enanthic acids at 20–80 °C. Russian Journal of Physical Chemistry A, 2008, 82, 728-731.	0.1	8
20	The solubility of fullerene C70 in monocarboxylic acids C n â^' 1H2n â^' 1COOH (n = 1–9) over the temperature range 20–80°C. Russian Journal of Physical Chemistry A, 2008, 82, 1045-1047.	0.1	8
21	Study of aqueous solutions of fullerenol-d by the dynamic light scattering method. Russian Journal of Applied Chemistry, 2011, 84, 50-53.	0.1	7
22	Electrochemical properties of aqueous solutions of fullerenol-d. Russian Journal of Applied Chemistry, 2011, 84, 79-83.	0.1	7
23	Synthesis and protection effect of fullerenol-d. II. Modification of water-soluble priming enamel with fullerenol-d. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 334-339.	0.3	7
24	Synthesis of fullerenol-70-d by direct oxidation and its identification. Russian Journal of General Chemistry, 2013, 83, 674-678.	0.3	7
25	The solubility of C60Br n (n = 6, 8, 24) in organic solvents. Russian Journal of Physical Chemistry A, 2009, 83, 1935-1939.	0.1	6
26	Synthesis and protection effect of fullerenol-d. Protection of Metals and Physical Chemistry of Surfaces, 2011, 47, 307-312.	0.3	5
27	Temperature Dependence of Light Fullerenes Solubility in Oleic, Linoleic and Linolenic Acids. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 300-308.	1.0	4
28	Solubility of [C60(=C(COOH)2)3] in the [C60(=C(COOH)2)3]-SmCl3-H2O ternary system at 25°C. Russian Journal of Physical Chemistry A, 2015, 89, 998-1000.	0.1	4
29	Dissociation of fullerenol-70-d in aqueous solutions and their electric conductivity. Russian Journal of Physical Chemistry A, 2015, 89, 771-775.	0.1	4
30	Solubility of Rare Earth Chlorides in Ternary Water-Salt Systems in the Presence of a Fullerenol—C60(OH)24 Nanoclusters at 25 °C. Models of Nonelectrolyte Solubility in Electrolyte Solutions. Processes, 2021, 9, 349.	1.3	4
31	Extraction of thorium(IV), lantanum(III), and yttrium(III) nitrates with a composite solid extractant based on a polymeric support impregnated with trialkylamine. Russian Journal of Applied Chemistry, 2006, 79, 1266-1270.	0.1	3
32	Phase Separation in Ternary Liquid Systems Containing Rare-Earth Metal(III) Nitrate Solvates with Tri-n-butyl Phosphate. Russian Journal of Applied Chemistry, 2004, 77, 559-562.	0.1	2
33	Extraction of Th(IV), La(III), and Y(III) nitrates with a composite solid extractant based on a polymeric support impregnated with trialkylmethylammonium nitrate. Russian Journal of Applied Chemistry, 2006, 79, 1802-1807.	0.1	2
34	Mutual solubility between hexane and tri-n-butyl phosphate solvates of lanthanide(III) and thorium(IV) nitrates at various temperatures. Russian Journal of Inorganic Chemistry, 2007, 52, 1144-1146.	0.3	2
35	Solubility of bromofullerenes C60Br n (n = 6, 8, 24) in aqueous-ethanolic mixtures at 25°C. Russian Journal of Applied Chemistry, 2010, 83, 997-1000.	0.1	2
36	Solubility of light fullerenes in oleic, linoleic, and linolenic acids at 20–80°C. Russian Journal of General Chemistry, 2011, 81, 569-572.	0.3	2

VIKTOR A KESKINOV

#	Article	IF	CITATIONS
37	Quantum-chemical models of the annealing of open shell carbon clusters during the synthesis of fullerenes. Russian Journal of Physical Chemistry A, 2012, 86, 106-113.	0.1	2
38	Phase Separation of Ternary Liquid Systems Tetradecane-Cyclohexanone-Lanthanide(III) Nitrate Solvates with Tri-n-butyl Phosphate. Russian Journal of Applied Chemistry, 2004, 77, 162-164.	0.1	1
39	Phase Separation in the Systems Constituted by Tetradecane (Hexane, Decane), Tri-n-Butyl Phosphate, and Cerium(III) Nitrate Solvate with Tri-n-Butyl Phosphate. Russian Journal of Applied Chemistry, 2004, 77, 555-558.	0.1	1
40	Phase equilibria at various temperatures in the ternary liquid system containing solvates of thorium(IV) and uranyl(VI) nitrates with tri-n-butyl phosphate and tetradecane. Russian Journal of Inorganic Chemistry, 2006, 51, 977-979.	0.3	1
41	Phase equilibria in the system fullerene C60-hexane-o-xylene-dimethylformamide. Russian Journal of Applied Chemistry, 2007, 80, 206-208.	0.1	1
42	Phase equilibria in the liquid ternary system [Th(NO3)4(TBP)2]-[Gd(NO3)3(TBP)3]-TBP-isooctane at different temperatures. Russian Journal of Applied Chemistry, 2007, 80, 883-886.	0.1	1
43	Single-stage plasma-arc synthesis of metallo-endofullerences. Russian Journal of Applied Chemistry, 2007, 80, 1888-1893.	0.1	1
44	Phase equilibria in ternary liquid systems containing solvates of lutetium(III) and uranyl(VI) nitrates with tri-n-butyl phosphate and tetradecane at various temperatures. Russian Journal of Inorganic Chemistry, 2008, 53, 153-155.	0.3	1
45	Extraction kinetics of lanthanum(III), uranyl(VI), and thorium(IV) nitrates from water-salt solutions using a composite based on a polymeric support and tri-n-butyl phosphate at various temperatures. Russian Journal of Inorganic Chemistry, 2008, 53, 1666-1671.	0.3	1
46	Fullerenes as passivating agents of the surfaces of semiconductor photo- and light-emitting diodes. Russian Journal of Physical Chemistry A, 2011, 85, 1411-1415.	0.1	1
47	Nonlinear optical properties of solutions of heavy fullerenes in the near-ultraviolet region. Russian Journal of Physical Chemistry A, 2011, 85, 1603-1608.	0.1	1
48	Synthesis, identification, and benzene solubility of the piperidine, pyrrolidine, and morpholine derivatives of fullerene C60. Russian Journal of Physical Chemistry A, 2013, 87, 54-57.	0.1	1
49	Synthesis and identification of bromofullerenes C70Br8 and C70Br10 and their solubility in some aromatic solvents. Russian Journal of General Chemistry, 2013, 83, 670-673.	0.3	1
50	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2000, 246, 601-606.	0.7	0
51	Title is missing!. Russian Journal of Applied Chemistry, 2003, 76, 211-216.	0.1	Ο
52	Effect of Temperature on Phase Separation in Liquid Binary System Constituted by Tetradecane and Samarium(III) Nitrate Solvate with Tri-n-Butyl Phosphate and Ternary System Constituted by Tetradecane, Tri-n-Butyl Phosphate, and Samarium(III) Nitrate Solvate with Tri-n-Butyl Phosphate. Russian Journal of Applied Chemistry, 2004, 77, 563-565.	0.1	0
53	Phase Separation in Ternary Liquid Systems Tetradecane-n-Octanol (or n-Butanol)-Neodymium(III) Nitrate Solvate with Tri-n-Butyl Phosphate. Russian Journal of Applied Chemistry, 2004, 77, 729-731.	0.1	0
54	Extaction of lanthanide (III) nitrates from aqueous solutions with n-octanol. Russian Journal of Applied Chemistry, 2004, 77, 1559-1560.	0.1	0

#	Article	IF	CITATIONS
55	Mutual solubility of the components in systems RED-1 diluent-tri-n-butyl phosphate solvates of rare-earth element(III) (Nd, Gd, Y, Yb, Lu) nitrates-Escaid 100 diluent. Russian Journal of Applied Chemistry, 2006, 79, 360-362.	0.1	0
56	Stratification in a ternary liquid system [Th(NO3)4(TBP)2]-[UO2(NO3)2(TBP)2]-Exide 100 solvent at various temperatures. Russian Journal of Applied Chemistry, 2007, 80, 1281-1283.	0.1	0
57	Kinetics of thorium(IV) and lanthanum(III) extraction from aqueous salt solutions with composite material based on trialkylamine and polymeric support at various temperatures. Russian Journal of Applied Chemistry, 2007, 80, 1656-1660.	0.1	0
58	Phase diagram for the hexane-dimethylformamide-neodymium(III) nitrate tri-n-butyl phosphate solvate liquid ternary system at various temperatures. Russian Journal of Inorganic Chemistry, 2008, 53, 1505-1508.	0.3	0
59	Phase diagram for the hexane-acetonitrile-tri-n-butyl phosphate-solvated thorium(IV) nitrate ternary liquid system. Russian Journal of Inorganic Chemistry, 2008, 53, 1934-1938.	0.3	0
60	Phase diagrams for the [Th(NO3)4(TBP)2]-decane-[UO2(NO3)2(TBP)2] liquid ternary system. Russian Journal of Inorganic Chemistry, 2008, 53, 1939-1942.	0.3	0
61	Mutual solubility of components in the systems (R4N)2[Nd(NO3)5]-decane-n-octanol (n-butanol,) Tj ETQq1 1 0.78 12-16.	84314 rgB 0.1	3T /Overlock 0
62	Phase diagram for the hexane-[Y(NO3)3(TBP)3]-acetonitrile liquid ternary. Russian Journal of Inorganic Chemistry, 2009, 54, 305-311.	0.3	0
63	Phase separation in the (R4N)2[Nd(NO3)5]-hydrocarbon solvent-chloroform systems at various temperatures. Russian Journal of Inorganic Chemistry, 2009, 54, 482-485.	0.3	0
64	Phase diagram for the hexane-acetonitrile-tri-n-butyl phosphate-solvated neodymium(III) nitrate ternary liquid system. Russian Journal of Inorganic Chemistry, 2009, 54, 644-647.	0.3	0
65	Phase diagrams of (R4N)2[Nd(NO3)5]-decane-n-octanol (n-butanol, n-decanol) liquid ternary systems. Russian Journal of Inorganic Chemistry, 2009, 54, 1323-1328.	0.3	0
66	Phase diagrams of (R4N)2[Nd(NO3)5]-carbon tetrachloride-n-octanol (n-butanol, n-decanol,) Tj ETQq0 0 0 rgBT /C Chemistry, 2009, 54, 1490-1493.	Overlock 10 0.3	0 Tf 50 307 0
67	Physicochemical and mathematical modeling of phase separation processes in decane-(R4N)2[Nd(NO3)5]-aliphatic alcohol ternary liquid systems. Theoretical Foundations of Chemical Engineering, 2010, 44, 574-579.	0.2	0
68	Heavy fullerenes for semiconducting photodiodes operating at 1.5–5.0 μm wavelengths. Russian Journal of Physical Chemistry A, 2011, 85, 1016-1020.	0.1	0
69	Heavy Fullerene for Semi-Conducting Infrared Photo Diodes (1.5–5.0 μm). Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 648-655.	1.0	0