
Steffen Lindner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8725235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth of E. coli on formate and methanol via the reductive glycine pathway. Nature Chemical Biology, 2020, 16, 538-545.	8.0	234
2	The formate bio-economy. Current Opinion in Chemical Biology, 2016, 35, 1-9.	6.1	228
3	Accelerated pentose utilization by <i><scp>C</scp>orynebacterium glutamicum</i> for accelerated production of lysine, glutamate, ornithine and putrescine. Microbial Biotechnology, 2013, 6, 131-140.	4.2	143
4	Engineering of a Glycerol Utilization Pathway for Amino Acid Production by <i>Corynebacterium glutamicum</i> . Applied and Environmental Microbiology, 2008, 74, 6216-6222.	3.1	137
5	Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresource Technology, 2013, 145, 254-258.	9.6	117
6	Phosphotransferase System-Independent Glucose Utilization in Corynebacterium glutamicum by Inositol Permeases and Glucokinases. Applied and Environmental Microbiology, 2011, 77, 3571-3581.	3.1	103
7	The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the <scp> </scp> -Lactate Dehydrogenase LdhA in <i>Corynebacterium glutamicum</i> . Journal of Bacteriology, 2008, 190, 8033-8044.	2.2	80
8	NCgl2620 Encodes a Class II Polyphosphate Kinase in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2007, 73, 5026-5033.	3.1	77
9	METABOLIC ENGINEERING OF CORYNEBACTERIUM GLUTAMICUM AIMED AT ALTERNATIVE CARBON SOURCES AND NEW PRODUCTS. Computational and Structural Biotechnology Journal, 2012, 3, e201210004.	4.1	71
10	Engineered Assimilation of Exogenous and Endogenous Formate in <i>Escherichia coli</i> . ACS Synthetic Biology, 2017, 6, 1722-1731.	3.8	65
11	Awakening a latent carbon fixation cycle in Escherichia coli. Nature Communications, 2020, 11, 5812.	12.8	64
12	Pyruvate Formate-Lyase Enables Efficient Growth of <i>Escherichia coli</i> on Acetate and Formate. Biochemistry, 2016, 55, 2423-2426.	2.5	57
13	Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2010, 87, 703-713.	3.6	55
14	<i>In Vivo</i> Selection for Formate Dehydrogenases with High Efficiency and Specificity toward NADP ⁺ . ACS Catalysis, 2020, 10, 7512-7525.	11.2	51
15	Ribulose Monophosphate Shunt Provides Nearly All Biomass and Energy Required for Growth of <i>E.Âcoli</i> . ACS Synthetic Biology, 2018, 7, 1601-1611.	3.8	49
16	Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Applied Microbiology and Biotechnology, 2010, 87, 583-593.	3.6	43
17	An Engineering Approach for Rewiring Microbial Metabolism. Methods in Enzymology, 2018, 608, 329-367.	1.0	41
18	Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Applied Microbiology and Biotechnology, 2013, 97, 143-152.	3.6	40

STEFFEN LINDNER

#	Article	IF	CITATIONS
19	Phosphotransferase System-Mediated Glucose Uptake Is Repressed in Phosphoglucoisomerase-Deficient Corynebacterium glutamicum Strains. Applied and Environmental Microbiology, 2013, 79, 2588-2595.	3.1	39
20	Characterization of Fructose 1,6-Bisphosphatase and Sedoheptulose 1,7-Bisphosphatase from the Facultative Ribulose Monophosphate Cycle Methylotroph Bacillus methanolicus. Journal of Bacteriology, 2013, 195, 5112-5122.	2.2	39
21	Growth-coupled selection of synthetic modules to accelerate cell factory development. Nature Communications, 2021, 12, 5295.	12.8	35
22	Exopolyphosphatases PPX1 and PPX2 from <i>Corynebacterium glutamicum</i> . Applied and Environmental Microbiology, 2009, 75, 3161-3170.	3.1	32
23	NADPH-Auxotrophic <i>E. coli</i> : A Sensor Strain for Testing <i>in Vivo</i> Regeneration of NADPH. ACS Synthetic Biology, 2018, 7, 2742-2749.	3.8	30
24	Metabolic Engineering of an ATP-Neutral Embden-Meyerhof-Parnas Pathway in Corynebacterium glutamicum: Growth Restoration by an Adaptive Point Mutation in NADH Dehydrogenase. Applied and Environmental Microbiology, 2015, 81, 1996-2005.	3.1	28
25	The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology (United Kingdom), 2013, 159, 1770-1781.	1.8	28
26	Coupling electrochemical CO2 reduction to microbial product generation – identification of the gaps and opportunities. Current Opinion in Biotechnology, 2022, 74, 154-163.	6.6	28
27	Artificial pathway emergence in central metabolism from three recursive phosphoketolase reactions. FEBS Journal, 2018, 285, 4367-4377.	4.7	27
28	Impact of a new glucose utilization pathway in amino acid-producingCorynebacterium glutamicum. Bioengineered Bugs, 2011, 2, 291-295.	1.7	25
29	Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	24
30	Engineering of Corynebacterium glutamicum for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids. Bioresources and Bioprocessing, 2014, 1, .	4.2	21
31	An "energyâ€auxotroph― <i>Escherichia coli</i> provides an in vivo platform for assessing NADH regeneration systems. Biotechnology and Bioengineering, 2020, 117, 3422-3434.	3.3	20
32	Glycerol-3-phosphatase of Corynebacterium glutamicum. Journal of Biotechnology, 2012, 159, 216-224.	3.8	19
33	Underground isoleucine biosynthesis pathways in E. coli. ELife, 2020, 9, .	6.0	19
34	Design and engineering of E. coli metabolic sensor strains with a wide sensitivity range for glycerate. Metabolic Engineering, 2020, 57, 96-109.	7.0	17
35	Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation. Advances in Biochemical Engineering/Biotechnology, 2022, , 299-350.	1.1	9
36	Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain. MBio, 2021, 12, e0032921.	4.1	8

STEFFEN LINDNER

#	Article	IF	CITATIONS
37	A synthetic glycerol assimilation pathway demonstrates biochemical constraints of cellular metabolism. FEBS Journal, 2020, 287, 160-172.	4.7	7
38	Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 669093.	4.1	7
39	Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Microbiology (United Kingdom), 2015, 161, 1830-1843.	1.8	6
40	Expression of Formate-Tetrahydrofolate Ligase Did Not Improve Growth but Interferes With Nitrogen and Carbon Metabolism of Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2020, 11, 1650.	3.5	5
41	Activating Silent Glycolysis Bypasses in <i>Escherichia coli</i> . Biodesign Research, 2022, 2022, .	1.9	3
42	Metabolic Engineering of Corynebacterium glutamicum for Alternative Carbon Source Utilization. , 2015, , 57-70.		2
43	Synthetic metabolism approaches: A valuable resource for systems biology. Current Opinion in Systems Biology, 2022, 30, 100417.	2.6	2
44	Metabolic Engineering an ATP-neutral EMP pathway in C. glutamicum: adaptive point mutation in NADH dehydrogenase restores growth. New Biotechnology, 2014, 31, S165.	4.4	0