Geng-ping Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/872507/publications.pdf

Version: 2024-02-01

706676 563245 41 875 14 28 citations g-index h-index papers 42 42 42 1299 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Climate change vulnerability of terrestrial vertebrates in a major refuge and dispersal corridor in North America. Diversity and Distributions, 2022, 28, 1227-1241.	1.9	6
2	Variation in preferences describing how to value the future among conservation practitioners and its implications for today's protection priorities. Biological Conservation, 2022, 271, 109585.	1.9	O
3	Potential distribution of Schistocerca gregaria gregaria in southwestern Asia. Agricultural and Forest Entomology, 2021, 23, 388.	0.7	1
4	Are protected areas well-sited to support species in the future in a major climate refuge and corridor in the United States?. Biological Conservation, 2021, 255, 108982.	1.9	19
5	Cautions in weighting individual ecological niche models in ensemble forecasting. Ecological Modelling, 2021, 448, 109502.	1.2	8
6	Understanding how opportunity cost affects multi-objective conservation investment in the Central and Southern Appalachian Region (USA). Environmental Conservation, 2021, 48, 192-199.	0.7	0
7	The use of insect life tables in optimizing invasive pest distributional models. Ecography, 2021, 44, 1501-1510.	2.1	2
8	Role of complementary and competitive relationships among multiple objectives in conservation investment decisions. Forest Policy and Economics, 2021, 131, 102569.	1.5	3
9	Isolation and identification of attractants from the pupae of three lepidopteran species for the parasitoid <i>Chouioia cunea</i> Yang. Pest Management Science, 2020, 76, 1920-1928.	1.7	6
10	Insight into intraspecific niche divergence and conservatism in American horseshoe crabs (Limulus) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 50
11	Assessing the ecological niche and invasion potential of the Asian giant hornet. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24646-24648.	3.3	55
12	An evaluation of transferability of ecological niche models. Ecography, 2019, 42, 521-534.	2.1	97
13	Phylogeography of Dendrolimus punctatus (Lepidoptera: Lasiocampidae): Population differentiation and last glacial maximum survival. Ecology and Evolution, 2019, 9, 7480-7496.	0.8	9
14	Selecting the best individual model to predict potential distribution of Cabomba caroliniana in China. Biodiversity Science, 2019, 27, 140-148.	0.2	2
15	What are the best predictors for invasive potential of weeds? Transferability evaluations of model predictions based on diverse environmental data sets for <i>Flaveria bidentis</i> . Weed Research, 2018, 58, 141-149.	0.8	24
16	Identification and characterization of heat shock proteins in a parasitic wasp <i>Chouioia cuneae</i> (Hymenoptera: Eulophidae). Entomological Research, 2018, 48, 145-155.	0.6	7
17	Mapping the potential distribution of the schistosomiasis intermediate host Biomphalaria straminea in China. Geospatial Health, $2018,13,.$	0.3	4
18	Incorporating anthropogenic variables into ecological niche modeling to predict areas of invasion of Popillia japonica. Journal of Pest Science, 2017, 90, 151-160.	1.9	24

#	Article	IF	Citations
19	Chemical investigations of volatile kairomones produced by <i>Hyphantria cunea</i> (Drury), a host of the parasitoid <i>Chouioia cunea</i> Yang. Bulletin of Entomological Research, 2017, 107, 234-240.	0.5	10
20	Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biological Invasions, 2017, 19, 2519-2532.	1.2	55
21	Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe. Journal of Pest Science, 2017, 90, 1045-1057.	1.9	25
22	Schistosoma japonicum transmission risk maps at present and under climate change in mainland China. PLoS Neglected Tropical Diseases, 2017, 11, e0006021.	1.3	32
23	Phylogeography of a semi-aquatic bug, Microvelia horvathi (Hemiptera: Veliidae): an evaluation of historical, geographical and ecological factors. Scientific Reports, 2016, 6, 21932.	1.6	25
24	Range wide molecular data and niche modeling revealed the Pleistocene history of a global invader (Halyomorpha halys). Scientific Reports, 2016, 6, 23192.	1.6	37
25	Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center. Scientific Reports, 2016, 6, 26268.	1.6	15
26	Transcriptome and Expression Patterns of Chemosensory Genes in Antennae of the Parasitoid Wasp Chouioia cunea. PLoS ONE, 2016, 11, e0148159.	1.1	53
27	Effect of the Maxent model's complexity on the prediction of species potential distributions. Biodiversity Science, 2016, 24, 1189-1196.	0.2	39
28	Mapping the disjunct distribution of introduced codling moth <i>Cydia pomonella</i> in China. Agricultural and Forest Entomology, 2015, 17, 214-222.	0.7	5
29	Ecology and conservation of <i><scp>P</scp>seudolestes mirabilis</i> (<scp>O</scp> donata:) Tj ETQq1 1 0.784 <scp>C</scp> hina. Entomological Science, 2015, 18, 123-129.	4314 rgBT 0.3	
30	Potential Geographic Distribution of the Novel Avian-Origin Influenza A (H7N9) Virus. PLoS ONE, 2014, 9, e93390.	1.1	12
31	Testing the Potential of Proposed DNA Barcoding Markers in <i>Nezara virudula</i> and <i>Nezara antennata</i> When Geographic Variation and Closely Related Species Were Considered. Journal of Insect Science, 2014, 14, 1-11.	0.6	4
32	Effect of geographic background and equilibrium state on niche model transferability: predicting areas of invasion of Leptoglossus occidentalis. Biological Invasions, 2014, 16, 1069-1081.	1.2	34
33	Molecular data and ecological niche modelling reveal the <scp>P</scp> leistocene history of a semiâ€aquatic bug (<i><scp>M</scp>icrovelia douglasi douglasi</i>) in <scp>E</scp> ast <scp>A</scp> sia. Molecular Ecology, 2014, 23, 3080-3096.	2.0	52
34	Delimiting the coastal geographic background to predict potential distribution of Spartina alterniflora. Hydrobiologia, 2013, 717, 177-187.	1.0	13
35	Imidacloprid as a contact arrestant for larvae of the European chafer, <i>Amphimallon majale</i> Pest Management Science, 2013, 69, 483-492.	1.7	4
36	Geographic Distribution and Niche Divergence of Two Stinkbugs, <i>Parastrachia japonensis </i> and <i>Parastrachia nagaensis </i> Journal of Insect Science, 2013, 13, 1-16.	0.9	10

#	Article	IF	CITATIONS
37	Biogeographical Origin and Speciation of the <i> Anthocoris nemorum </i> Group. Journal of Insect Science, 2012, 12, 1-16.	0.9	4
38	Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion. PLoS ONE, 2012, 7, e46247.	1.1	14
39	Potential Geographic Distribution of Brown Marmorated Stink Bug Invasion (Halyomorpha halys). PLoS ONE, 2012, 7, e31246.	1.1	150
40	A study on the genus Macroscytus Fieber, 1860 from China (Hemiptera: Heteroptera: Cydnidae). Zootaxa, 2010, 2400, 1.	0.2	2
41	ENM2020: A Free Online Course and Set of Resources on Modeling Species' Niches and Distributions. Biodiversity Informatics, 0, 17, .	3.0	5