
Sung-Hoon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8725046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose-derived flexible carbonized paper for high-performance electromagnetic interference shielding. Carbon Trends, 2021, 5, 100085.	3.0	3
2	Enhancement in Electromagnetic Wave Shielding Effectiveness through the Formation of Carbon Nanofiber Hybrids on Carbon-Based Nonwoven Fabrics. Nanomaterials, 2021, 11, 2910.	4.1	3
3	Enhancement of Electromagnetic Wave Shielding Effectiveness of Carbon Fibers via Chemical Composition Transformation Using H2 Plasma Treatment. Nanomaterials, 2020, 10, 1611.	4.1	3
4	Enhancement of shielding effectiveness for electromagnetic wave radiation using carbon nanocoil-carbon microcoil hybrid materials. Applied Surface Science, 2019, 477, 264-270.	6.1	14
5	Effects of the Carbon Fiber-Carbon Microcoil Hybrid Formation on the Effectiveness of Electromagnetic Wave Shielding on Carbon Fibers-Based Fabrics. Materials, 2018, 11, 2344.	2.9	17
6	Geometry-Controlled Carbon Coils by SF6 Flow Injection Time with Reaction Temperature. Journal of Nanomaterials, 2018, 2018, 1-11.	2.7	0
7	Enhanced Formation of Carbon Microcoils with Different-Sized Ni Catalyst by Different Injection Gas Sequence. ECS Transactions, 2017, 75, 53-62.	0.5	0
8	Enhanced Formation of Carbon Microcoils with Ni Catalysts of Different Sizes. ECS Journal of Solid State Science and Technology, 2017, 6, M103-M108.	1.8	0
9	Controllable synthesis of carbon-nanocoil–carbon-microcoil hybrid materials. Materials and Design, 2017, 116, 42-50.	7.0	7
10	Effect of incorporating carbon nanocoils on the efficiency of electromagnetic-wave shielding of carbon-nanomaterial composites. Applied Surface Science, 2016, 380, 114-118.	6.1	9
11	Dominant Formation of Carbon Nano or Microcoils By the Manipulation of SF6 Injection Flow. ECS Meeting Abstracts, 2016, , .	0.0	0
12	Enhanced Formation of Carbon Microcoils Having Different-Sized Ni Catalyst By Different Injection Gas Sequence. ECS Meeting Abstracts, 2016, , .	0.0	0
13	Formation of noble-shaped carbon nanostructures. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 179-186.	1.6	4
14	Effectiveness of Electromagnetic-Wave Shielding by Composites of Carbon Nanotubes and Carbon Microcoils in Polyurethane. Journal of Nanoscience and Nanotechnology, 2015, 15, 9131-9135.	0.9	3
15	Electromagnetic Wave Shielding Effectiveness Based on Carbon Microcoil-Polyurethane Composites. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	12
16	Development of the geometry of carbon microcoils from carbon nanofilaments. Vacuum, 2014, 107, 219-224.	3.5	4
17	Reduction intermediates of graphene oxide for low temperature reduction electrode material. RSC Advances, 2014, 4, 22476-22480.	3.6	8
18	Novel blue-emitting Eu2+-activated LaOCI:Eu materials. Journal of Materials Chemistry C, 2014, 2, 2799.	5.5	30

SUNG-HOON KIM

#	Article	IF	CITATIONS
19	Investigation of SF ₆ Injection During Cyclic C ₂ H ₂ /SF ₆ Flow for the Formation of Geometrically Controlled Carbon Coils. Journal of Nanoscience and Nanotechnology, 2014, 14, 9182-9188.	0.9	2
20	Effect of Injection Stage of SF ₆ flow on Carbon Micro Coils Formation. ECS Journal of Solid State Science and Technology, 2013, 2, M56-M59.	1.8	11
21	The Geometry Variation of As-Grown Carbon Coils with Ni Layer Thickness and Hydrogen Plasma Pretreatment. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	Ο
22	Developing Aspect of Carbon Coils Formation During the Beginning Stage of the Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 5754-5758.	0.9	2
23	Controlled Geometry Formation of the Carbon Coils by the Substrate Pretreatment. ISRN Nanomaterials, 2013, 2013, 1-8.	0.7	2
24	Effect of the on/off Cycling Modulation Time Ratio of / Flows on the Formation of Geometrically Controlled Carbon Coils. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	6
25	Effect of Gas Phase Composition Cycling On/Off Modulation Numbers of C ₂ H ₂ /SF ₆ Flows on the Formation of Geometrically Controlled Carbon Coils. Journal of Nanoscience and Nanotechnology, 2012, 12, 6100-6106.	0.9	5
26	Large-Scale Synthesis of the Controlled-Geometry Carbon Coils by the Manipulation of the SF ₆ Gas Flow Injection Time. Journal of Nanoscience and Nanotechnology, 2012, 12, 4397-4402.	0.9	15
27	Effect of Si and SiO2Substrates on the Geometries of As-Grown Carbon Coils. Journal of Nanomaterials, 2012, 2012, 1-8.	2.7	3
28	Effect of SF6 incorporation in the cyclic process on the low temperature deposition of carbon nanofilaments. Thin Solid Films, 2010, 518, 6412-6416.	1.8	5
29	Enhancement of Carbon Nanofilaments Formation Density and the Surface Electrical Conductivity by the Gas Phase Composition Cycling. Molecular Crystals and Liquid Crystals, 2009, 513, 179-186.	0.9	0
30	Effect of the On/Off Cyclic Modulation Time Ratio of C2H2/H2 Flow on the Low Temperature Deposition of Carbon Nanofilaments. Journal of Nanoscience and Nanotechnology, 2007, 7, 3969-3973.	0.9	9